Ahmadi, M.-A., Ahmadi, M. R., Hosseini, S. M. ,Ebadi, M. 2014, Connectionist model predicts the porosity and permeability of petroleum reservoirs by means of petro-physical logs: Application of artificial intelligence, Journal of Petroleum Science and Engineering, Vol. 123, p. 183-200.
Ahmadi, M. A., Ebadi, M., Marghmaleki, P. S. ,Fouladi, M. M. 2014, Evolving predictive model to determine condensate-to-gas ratio in retrograded condensate gas reservoirs, Fuel, Vol. 124, p. 241-257.
Al-Anazi, A. ,Gates, I. 2010, Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study, Computers and geosciences, Vol. 36, p. 1494-1503.
Anifowose, F. ,Abdulraheem, A. 2011, Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization, Journal of Natural Gas Science and Engineering, Vol. 3, p. 505-517.
Anifowose, F., Labadin, J. ,Abdulraheem, A. 2015, Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines, Applied Soft Computing, Vol. 26, p. 483-496.
Anifowose, F. A., Labadin, J. ,Abdulraheem, A. 2013, Prediction of petroleum reservoir properties using different versions of adaptive neuro-fuzzy inference system hybrid models, Int. J. Comput. Inf. Syst. Ind. Manage. Appl, Vol. 5, p. 413-426.
Ansari, H. R. ,Gholami, A. 2015, An improved support vector regression model for estimation of saturation pressure of crude oils, Fluid Phase Equilibria, Vol. 402, p. 124-132.
Asoodeh, M. ,Bagheripour, P. 2012, Prediction of compressional, shear, and stoneley wave velocities from conventional well log data using a committee machine with intelligent systems, Rock Mechanics and Rock Engineering, Vol. 45, p. 45-63.
Bagheripour, P., Gholami, A., Asoodeh, M. ,Vaezzadeh-Asadi, M. 2015, Support vector regression based determination of shear wave velocity, Journal of Petroleum Science and Engineering, Vol. 125, p. 95-99.
Baziar, S., Gafoori, M. M., Pour, M., Mehdi, S., Bidhendi, M. N. ,Hajiani, R. 2015, Toward a Thorough Approach to Predicting Klinkenberg Permeability in a Tight Gas Reservoir: A Comparative Study, Iranian Journal of Oil & Gas Science and Technology, Vol. 4, p. 18-36.
Baziar, S., Tadayoni, M., Nabi-Bidhendi, M. ,Khalili, M. 2014, Prediction of permeability in a tight gas reservoir by using three soft computing approaches: A comparative study, Journal of Natural Gas Science and Engineering, Vol. 21, p. 718-724.
Boadu, F. K. 2001, Predicting oil saturation from velocities using petrophysical models and artificial neural networks, Journal of Petroleum Science and Engineering, Vol. 30, p. 143-154.
Dmuth, H. ,Beale, M. 2000, Neural Network Toolbox for use with Matlab, User’s Guide, Natick, MA, p.
Eskandari, H., Rezaee, M. ,Mohammadnia, M. 2004, Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir South-West Iran, CSEG recorder, Vol. 42, p. 48.
Gholami, R. ,Moradzadeh, A. 2012, Support vector regression for prediction of gas reservoirs permeability, Journal of Mining and Environment, Vol. 2, p. 41-52.
Gorjian, M., Memarian, H., Moosavi, M. ,Mehrgini, B. 2012, Dynamic properties of anhydrites, marls and salts of the Gachsaran evaporitic formation, Iran, Journal of Geophysics and Engineering, Vol. 10, p. 015001.
Kadkhodaie-Ilkhchi, A., Rezaee, M. R., Rahimpour-Bonab, H. ,Chehrazi, A. 2009, Petrophysical data prediction from seismic attributes using committee fuzzy inference system, Computers & Geosciences, Vol. 35, p. 2314-2330.
Kadkhodaie Ilkhchi, A., Rezaee, M. ,Moallemi, S. A. 2006, A fuzzy logic approach for estimation of permeability and rock type from conventional well log data: an example from the Kangan reservoir in the Iran Offshore Gas Field, Journal of Geophysics and Engineering, Vol. 3, p. 356-369.
Kirkpatrick, S., Gelatt, C. D. ,Vecchi, M. P. 1983, Optimization by simulated annealing, science, Vol. 220, p. 671-680.
Mitchell, T. M. (1997). Machine learning. WCB, McGraw-Hill Boston, MA:.
Moatazedian, I., Rahimpour-Bonab, H., Kadkhodaie-Ilkhchi, A. ,Rajoli, M. 2011, Prediction of shear and Compressional Wave Velocities from petrophysical data utilizing genetic algorithms technique: A case study in Hendijan and Abuzar fields located in Persian Gulf, Geopersia, Vol. 1, p. 1-17.
Nazari, S., Kuzma, H. A. ,Rector III, J. W. (2011). Predicting permeability from well log data and core measurements using support vector machines. 2011 SEG Annual Meeting, Society of Exploration Geophysicists.
Nouri Taleghani, M., Saffarzadeh, S., Karimi Khaledi, M. ,Zargar, G. 2013, Development of an Intelligent System to Synthesize Petrophysical Well Logs, Iranian Journal of Oil & Gas Science and Technology, Vol. 2, p. 11-24.
Park, M. G., Jeon, J. H. ,Lee, M. C. (2001). Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing. Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE International Symposium on, IEEE.
Rajabi, M., Bohloli, B. ,Ahangar, E. G. 2010, Intelligent approaches for prediction of compressional, shear and Stoneley wave velocities from conventional well log data: A case study from the Sarvak carbonate reservoir in the Abadan Plain (Southwestern Iran), Computers & Geosciences, Vol. 36, p. 647-664.
Rezaee, M. R., Ilkhchi, A. K. ,Barabadi, A. 2007, Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia, Journal of Petroleum Science and Engineering, Vol. 55, p. 201-212.
Rezaee, M. R., Kadkhodaie-Ilkhchi, A. ,Alizadeh, P. M. 2007, Intelligent approaches for the synthesis of petrophysical logs, Journal of Geophysics and Engineering, Vol. 5, p. 12.
Rolf, B., Mohammed, W. ,Mohsen, P. 2006, A preliminary study of casing collapse in Iran Hydroquest Report, Schlumberger Oil Company, p.
Rosen, S. L. ,Harmonosky, C. M. 2005, An improved simulated annealing simulation optimization method for discrete parameter stochastic systems, Computers & Operations Research, Vol. 32, p. 343-358.
Sebtosheikh, M. A., Motafakkerfard, R., Riahi, M.-A., Moradi, S. ,Sabety, N. 2015, Support vector machine method, a new technique for lithology prediction in an Iranian heterogeneous carbonate reservoir using petrophysical well logs, Carbonates and Evaporites, Vol. 30, p. 59-68.
Sebtosheikh, M. A., Motafakkerfard, R., Riahi, M. A. ,Moradi, S. 2015, Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir, Iranian Journal of Oil & Gas Science and Technology, Vol. 4, p. 1-14.
Wasserman, P. D. (1989). Neural computing: theory and practice. New York, Van Nostrand Reinhold.
Yue, Y. ,Wang, J. 2007, SVM method for predicting the thickness of sandstone, Applied Geophysics, Vol. 4, p. 276-281.
Zoveidavianpoor, M., Samsuri, A. ,Shadizadeh, S. R. 2013, Adaptive neuro fuzzy inference system for compressional wave velocity prediction in a carbonate reservoir, Journal of Applied Geophysics, Vol. 89, p. 96-107.