Discrimination of Pb and Zn geochemical anomalies using classical, multifractal (C-N) and (C-A) and singularity index statistical methods in Arak 1:100000 sheet

Abstract

 
1-Introduction
Separation of geochemical anomalies from background has always been a significant concern of exploration geochemistry. The search for methods that can make this analysis quantitative and objective aims not only at the reduction of subjectiveness but also at providing an automatic routine in exploration, assisting the interpretation and production of geochemical maps (Nazarpour et al., 2016). Arak 1:100000 geological sheet is located in the north of Malayer-Aligoudarz-Efsahan Pb-Zn metalogenic belt, so this sheet has been studied. In this study, we compared the methods of classical statistics (Mean+2SDEV), exploratory data analysis (MAD), concentration-number (C-N) and concentration-area (C-A) fractal models. Also, singularity index models were used to separate the Pb and Zn anomalies in Arak 1:100000 geochemical sheet. The results of mentioned methods, showed that the singularity index method has a higher accuracy. Also, indicates the higher concentration of Zn in area of study.
2-Methodology
2-1 Classical statistics
Various statistical methods have been used to process geochemical data in order to determine threshold values. Statistical quantities, such as the mean, standard deviation (SDEV) and percentiles, have been used to define threshold for separating anomalies form background. For example, geochemical anomalies have been defined as values higher than a threshold defined as the 75th or 85th percentile, and Mean+SDEV or Mean+2SDEV (Nazarpour et al., 2015).
 
2-2 EDA (Exploratory Data Analysis)
In exploratory data analysis (here after named EDA) of geochemical exploration data, the median+2MAD value was initially used to identify extreme values and act as threshold for further inspection of large data sets (Carranza, 2009). The EDA was first established by Tukey (1977), was developed further by, and then was used by many researchers in modeling of geochemical anomalies (Carranza, 2009). The MAD is the median of absolute deviations of individual dataset values (Xi) from the median of all dataset values (Tukey, 1976):
(1) MAD = median 14 [│Xi-median Xi│]">
2-3 Multifractal
Fractal and multifractal models have also been applied to separate anomalies from background values. These methods are gradually being adopted as an effective and efficient means to analyze spatial structures in metallic geochemical systems (Afzal et al., 2017). The concentration-number (C-N), concentration-area (C-A) multi-fractal methods has been used for delineation and description of relations among mineralogical, geochemical and geological features based on surface and subsurface data (Nazarpour et al., 2015). Fractal/multi-fractal models consist of the frequency distribution and the spatial self-similar or self-affine characteristics of geochemical variables and have been demonstrated to be useful tools for decomposing geological complexes and mixed geochemical populations and to recognize weak geochemical anomalies hidden within strong geochemical background (Cheng et al., 1994).
2-4 Singularity index
The singularity technique is another vital progress for fractal/multifractal modeling of geochemical data (Zuo et al., 2012). It is defined as the characterization of the anomalous behaviors of singular physical processes that often result in anomalous amounts of energy release or material accumulation within a narrow spatial–temporal interval. The singularity can be estimated from observed element concentration within small neighborhoods based on the following equation (Cheng, 2007):
(2) 14X=c·εa-E">
 
The singularity index is a powerful tool to identify weak anomalies, but it is influenced by the selection of the window size. When applying this method, one should use different window sizes to process the geochemical data and find an appropriate window size which can highlight the interesting results (Zuo et al., 2012).
 
3- Results and discussion
Threshold values obtained using mentioned methods were used to map the spatial distribution of element concentrations. These interpolated maps were produced by means of inverse distance weighted (IDW) method (Nazarpour et al., 2016). In classical statistics and MAD methods, anomalies are usually detected, regardless of the location of each instance, and only by formulating relationships (Hashemi marand et al., 2018). In these methods, it is possible that some of the proposed ranges are false anomalies (Tukey, 1977). The geochemical anomalies of the Pb and Zn elements were separated using fractal methods of concentration-number (C-N), concentration-area (C-A), and according to the fitting line of each element on the logarithmic graphs. The singularity index estimated through a small window mainly reflects the fluctuation of the element concentration (Afzal et al., 2017). The singularity index estimated through a large window mainly reflects regional changes but it does not focus on the local weak anomalies (Zuo et al., 2012). There is probably a significant effect of the contact between exposed bedrock and covered areas, or there could be other deterministic trends as well, which should be studied further (Cheng, 2007). The results of the named methods are shown in Fig. 1.
4-Conclusions
Singularity index analysis, indicated that the hidden anomalies are better coincidence with indices and mineral deposit occurrence in the study area. In general, the comparison between these methods indicate that the concentration of Pb and Zn increased toward the and southwest and south-northeast parts, respectively. In these regions there is high potential for the occurrence of promising mining areas. Moreover, the obtained Pb and Zn anomalies have a reasonable correlation with the exposure of limestone in the study area, which is a suitable host rock for the formation of MVT type Pb and Zn deposits.
 
 
 
 
 
 
a
 
 
 
 
 
 
 
b
 
 
 
 
 
 
c
 
 
 
 
 
 
 
d
 
 
 
 
 
 
e
 
 
 
 
Figure 1. Maps of spatial distributions of Pb, Zn elements. a) Classic statistics, b) MAD, c) Multifractal (C-N), d) Multifractal (C-A), e) Singularity index
References
Afzal, P., Ahmadi, K., Rahbar, K., 2017. Application of fractal-wavelet analysis for separation of geochemical anomalies. Journal of African Earth Sciences 128, 27-36.
Carranza, E.J.M., 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews 35(3-4), 383–400.
Cheng, Q., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews 32, 314- 324.
Cheng, Q., Agterberg, F.P., Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration 51(2), 109-130.
Hashemi marand ,G., Jafari, M., Afzal, P., Khakzad, A., 2018. Determination of relationship between silver and lead mineralization based on fractal modeling in Mehdiabad Zn-Pb-Ag deposit, Central Iran. Journal of Earth Sciences 27, 111-118.‎
Nazarpour, A., Paydar, G.R., Carranza, E.J.M., 2016. Stepwise regression for recognition of geochemical anomalies: Case study in Takab area, NW Iran. Journal of Geochemical Exploration 168, 150-162.
Nazarpour, A., Sadeghi, B., Sadeghi, M., 2015. Application of fractal models to characterization and evaluation of vertical distribution of geochemical data in Zarshuran gold deposit, NW Iran. Journal of Geochemical Exploration 148, 60-70.
Tukey, J.W., 1977. Box-and-whisker plots. Exploratory data analysis 39-43.
Zuo, R., Carranza, E.J.M., Cheng, Q., 2012. Fractal/multifractal modelling of geochemical data 122, 1–3.
 

Keywords

Main Subjects


آقانباتی، ع.، 1383، کتاب زمین­شناسی ایران، سازمان زمین­شناسی ایران، ص 709.
مجتهدزاده، س ح.، بمانی، ملک زاده.، 1396، تجزیه و تحلیل داده‎­های ژئوشیمی اکتشافی در محدوده معدن سرب و روی ایرانکوه اصفهان با استفاده از روش‎­های تحلیل اکتشافی داده‎­ها (EDA) و هندسه فرکتال، روش های تحلیلی و عددی در مهندسی معدن، شماره 7(13)، ص 71-90.‎
مغفوری، س.، حسین زاده، رجبی.، ع، عظیم زاده.، ا م.، 1396، کانسار دره زنجیر؛ نمونه ای از کانسارهای روی-سرب با میزبان کربناته (MVT) در توالی رسوبی کرتاسه پیشین، حوضه جنوب یزد. فصلنامه علمی-پژوهشی علوم زمین، شماره 26(103)، ص 13-28.‎
شهریاری، ا.،1377، مطالعه زمین شناسی، ژئوشیمی، آنالیز رخساره ای و ژنز کانسار سرب و روی ویشان-تکیه، پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس، ص 236.
نبوی، م.، 1355، مقدمه­ای بر زمین­شناسی ایران، سازمان زمین­شناسی ایران، 171 ص.
Afzal,P., Ahmadi. K., Rahbar. K., 2017, Application of fractal-wavelet analysis for separation of geochemical anomalies. Journal of African Earth Sciences, Vol: 128, p: 27-36.
Agard,P., Omrani. J., Jolivet. L., Whitechurch. H., Vrielynck. B., Spakman. Wortel. R., 2011, Zagros orogeny: a subduction-dominated process. Geological Magazine, Vol: 148(5-6), p: 692-725.
Agterberg,F. P., Bonham-Carter, G. F., Wright, D. F.1990, Statistical pattern integration for mineral exploration. In Computer applications in resource estimation, p: 1-21.
Agterberg,F. P., Cheng. Q., Brown.A., Good. D., 1996, Multifractal modeling of fractures in the Lac du Bonnet batholith, Manitoba. Computers & Geosciences, Vol: 22(5), p: 497-507.
Agterberg,F.P., 2012, Multifractals and geostatistics. Journal of Geochemical Exploration Vol: 122, p:113–123.
Alavi,M., 1994, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, Vol: 229(3-4), p: 211-238.
Asadi,H. H., Kianpouryan, S., Lu. Y. J. McCuaig. T. C., 2014, Exploratory data analysis and C–A fractal model applied in mapping multi-element soil anomalies for drilling: A case study from the Sari Gunay epithermal gold deposit, NW Iran. Journal of Geochemical Exploration, Vol: 145, p: 233-241.
Cheng.Q., Agterberg. F. P., Ballantyne. S. B., 1994, The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, Vol: 51(2), p: 109-130.
Cheng,Q., Agterberg, F. P., 1996, Multifractal modeling and spatial statistics. Mathematical Geology, Vol: 28(1), p: 1-16.
Cheng,Q., Ping. Q., Kenny. F., 1997, Statistical and fractal analysis of surface stream patterns in the Oak Ridges Moraine, Ontario, Canada. In Proceedings of the International Association of Mathematical Geology Meeting, Barcelona, Vol: 1, p: 280-286.
Cheng,Q., 2007, Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China, Ore Geology Reviews, No: 32, 314 –p: 324.
Deng,J., Wang. Q., Yang. L., Wang. Y., Gong. Q., Liu. H., 2010, Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration, Vol: 105(3), p: 95-105.
Delavar,S. T., Afzal. P., Borg. G., Rasa. I., Lotfi. M., Omran. N. R,. 2012, Delineation of mineralization zones using concentration–volume fractal method in Pb–Zn carbonate hosted deposits. Journal of Geochemical Exploration, Vol: 118, p: 98-110.
Ehya,F., Lotfi. M., Rasa. I., 2010, Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study. Journal of Asian Earth Sciences, Vol: 37(2), p: 186-194.
Ghorbani,M. 2013. The Position of Iranian Mining Industry in the World. In The Economic Geology of Iran, p: 297-332. Springer, Dordrecht.
Hao,L., Zhao. X., Zhao. Y., Lu. J., Sun. L., 2014, Determination of the geochemical background and anomalies in areas with variable lithologies. Journal of Geochemical Exploration, Vol: 139, p: 177-182.
Hashemi marand,G., Jafari. M., Afzal. P., Khakzad. A., 2018, Determination of relationship between silver and lead mineralization based on fractal modeling in Mehdiabad Zn-Pb-Ag deposit, Central Iran. Journal of Earth Sciences, Vol: 27, p: 111-118.‎
Karimzadeh,A., 1992, Considering type, geochemistry-mineralogy relations and probable genesis of Emarat Zn and Pb mine (Arak), MSc dissertation, Tarbiat Moallem University.
Khani,S., Khakzad. A., Safari. M., Solgi. A., 2016, Petrography and Mineralography of Emarat Lead and Zinc Deposit (South Arak). Open Journal of Geology, Vol: 6(06), p: 387.
Lima,A., 2018, Evaluation of geochemical background at regional and local scales by fractal filtering technique: case studies in selected Italian areas. In Environmental Geochemistry (Second Edition), p: 115-132.
Luo,D., Zeng, G., 2018. Application and effects of singularity analysis in evaluating the denudation degree of Carlin-type gold deposits in southwest Guizhou, China. Ore Geology Reviews, Vol: 96, p: 164-180.
Mahdavi.,G., Khakzad, A., Lotfi, M. 2016, Conditions of Ore-Mineralization and Geochemical Correlation of Rare-Elements at the Robat Pb-Zn Deposit, West of Khomein, Central Iran. Open Journal of Geology, 6(09), 1118.
Mandelbrot,B. B., 1983, The fractal geometry of nature, Vol: 173. New York: WH freeman.
Mehrnia,S. R., 2017, Aplication of Fractal Technique for Analysis of Geophysical-Geochemical Databases in Tekieh Pb-Zn Ore Deposit (SE of Arak). Journal of Economic Geology, Vol: 8(2), p: 325-342.
Mirnejad,H., Simonetti. A., Molasalehi. F., 2011, Pb isotopic compositions of some Zn–Pb deposits and occurrences from Urumieh–Dokhtar and Sanandaj–Sirjan zones in Iran. Ore Geology Reviews, Vol: 39(4), p: 181-187.
Nazarpour,A., Sadeghi. B., Sadeghi. M., 2015, Application of fractal models to characterization and evaluation of vertical distribution of geochemical data in Zarshuran gold deposit, NW Iran. Journal of Geochemical Exploration, Vol: 148, p: 60-70.
Nazarpour,A., Paydar. G. R., Carranza. E. J. M., 2016, Stepwise regression for recognition of geochemical anomalies: Case study in Takab area, NW Iran. Journal of Geochemical Exploration, Vol: 168, p: 150-162.
Rad,M., Y., Haghshenas. S. S., Haghshenas. S. S., 2014, Mechanostratigraphy of cretaceous rocks by fuzzy logic in East Arak, Iran. In The 4th International Workshop on Computer Science and Engineering-Summer, WCSE.
Rajabi,A., Rastad. E., Canet. C., 2012, Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. International Geology Review, Vol: 54(14), P: 1649-1672.
Rajabi,A., Rastad, E., Canet, C., 2013, Metallogeny of Permian–Triassic carbonate-hosted Zn–Pb and F deposits of Iran: a review for future mineral exploration, Australian Journal of Earth Sciences, Vol: 60(2), P: 197–216.
Reimann,C., de Caritat, P., 2017, Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of The Total Environment, Vol: 578, P: 633-648.
Shokouh saljoughi,B., A. Hezarkhani, and E. Farahbakhsh., 2018, A comparative study of fractal models and U-statistic method to identify geochemical anomalies; case study of Avanj porphyry system, Central Iran. Journal of Mining and Environment, Vol: 9, P: 209-227.
Tukey,J. W., 1977, Box-and-whisker plots. Exploratory data analysis, P: 39-43.
Wang,H., Zu R., 2015, A comparative study of trend surface analysis and spectrum–area multifractal model to identify geochemical anomalies. Journal of Geochemical Exploration, Vol: 155, P: 84-90.
Zhao,X., Hao, L., Lu, J., Zhao, Y., Ma, C., Wei, Q., 2018. Origin of skewed frequency distribution of regional geochemical data from stream sediments and a data processing method. Journal of Geochemical Exploration, Vol: 194, P: 1-8.
Zuo,R., Carranza. E.J.M., Cheng, Q., 2012. Fractal/multifractal modelling of geochemical data, Vol: 122, P: 1–3.
Zuo,R., Wang. J., 2016, Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, Vol: 164, P: 33-41.