Geology, mineralization and geochemistry of Pade-Bid iron occurance, SW Bardaskan, South Khorasan province

Authors

1 Department of Geology and Research Center for Ore Deposit of Eastern Iran, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Pade-Bid iron occurance is located at northeast of Kashmar-Kerman zone, which is one of the most important iron metallogenic zone in Iran. Lithology of the area includes alternation of metamorphosed carbonate rocks, slate and phyllite, which are intruded by dioritic and gabbroic intrusions. Based on structural controls of orebody, metasomatic replacement and formation of low temperature H2O-beraring minerals and occurrence of magnetite and pyrite associated with chlorite, epidote, calcite and quartz, the iron mineralization is low temperature skarn-type. Magnetite chemistry and Ti, Ca, V, Al, Mn, Ni, and Cr contents are similar to those of skarn deposit. REE patern indicate positive Eu and Ce and negative Gd, Yb and Sm anomalis. The source of Fe mineralization is probably a younger intrusive body at depth due to field observations. Based on principal analysis on REE, the source of ore fluid is mostly magmatic water, which was ascended within fault zone and reacted with carbonate units to form the orebody. The northeastern part of Kashmar-Kerman zone has a great potential for Fe skarn-type deposits, which should be given more attention.

Keywords

Main Subjects


ایمان­پور. ب.، کریم­پور. م.ح.، ملکزاده شفارودی. الف.، 1395، بررسی کانه­زایی و ژئوشیمی کانسار آهن ده­زمان، (جنوب غرب بردسکن) و مقایسه آن با کانسارهای آهن نواری، مجله بلورشناسی و کانی شناسی ایران، شماره 4 (24)، ص 625-638.
براتی. م.، قلی­پور. م.، 1392، کانی­شناسی، ژئوشیمی و خاستگاه کانسار آهن ظفرآباد کردستان با استفاده از داده­های عناصر جزیی و نادر خاکی کانی مگنتیت، مجله زمین­شناسی اقتصادی، شماره 2 (5)، ص 235-254.
حاجی میرزاجان. ح.، ملکزاده شفارودی. الف.، همام. س.م، حیدریان شهری. م.ر؛  1396 الف، تعیین مدل کانه­زایی مگنتیت- اسپکیولاریت در کانسار آهن ده­زمان، استان خراسان رضوی: کانی­شناسی، ساخت و بافت و آلتراسیون، مجله بلورشناسی و کانی شناسی ایران، شماره 3 (25)، ص 543-556.
حاجی میرزاجان. ح.، ملکزاده شفارودی. الف.، همام. س.م.، حیدریان شهری. م.ر، 1396، تلفیق داده­های زمین­شناسی، کانی­سازی، ژئوشیمی و مغناطیس­سنجی در کانسار آهن آپاتیت­دار ده­زمان، استان خراسان رضوی، مجله زمین­شناسی اقتصادی، شماره 2 (9)، ص 335-356.
حاجی میرزاجان. ح.، ملکزاده شفارودی. الف.، همام. س.م.، حیدریان شهری. م.ر، 1397، ژئوشیمی و خاستگاه کانسنگ مگنتیت- اسپکیولاریت آپاتیت­دار کانسار آهن ده­زمان، شمال شرقی زون تکتونیکی کاشمر- کرمان، مجله زمین­شناسی کاربردی پیشرفته، درحال چاپ.
سهندی. م.، قاسمی. م.ر.، اختیارآبادی. ی.، 1389، نقشه 1:100000 قاسم آباد، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
شعبانی. س.، کریم­پور. م.ح.، ملکزاده شفارودی. الف.، 1395، مطالعات کانی­شناختی و ژئوشیمیایی در کانسار آهن دلکن، استان­خراسان­رضوی، هشتمین همایش انجمن زمین­شناسی اقتصادی ایران، دانشگاه زنجان.
ملکزاده شفارودی. الف.، کریم­پور. م.ح.، 1394، کانی‌سازی و مطالعات سیالات درگیر کانسار اکسید آهن- آپاتیت خانلق، شمال شرقی ایران، مجله زمین­شناسی کاربردی پیشرفته، شماره 5 (17)، ص 59-71.
نارویی. ح.، ملکزاده شفارودی. الف.، کریم­پور. م.ح.، 1396، کانی­شناسی و زمین­شیمی کانسنگ اسکارن آهن و توده­ نفوذی سینودیوریتی میزبان در منطقه اکتشافی زبرکوه (جنوب باخاری بردسکن، استان خراسان جنوبی)، مجله پترولوژی، شماره 31 (8)، ص 89-110.
نوزعیم. ر.، محجل. م.، یساقی. ع.، نصرآبادی. م.،  1393، تحلیل ساختاری و تعیین شرایط دگرشکلی پهنه برشی کوه سرهنگی در گرانیت ده زمان، شمال باختری بلوک لوت، مجله بلورشناسی و کانی­شناسی ایران، شماره1 (22)، ص  15-26.
نوزعیم. ر.، نصرآبادی. م.، محجل. م.، یساقی. ع.، 1394، کانی­شناسی، پتروژنز و تفسیر جایگاه تکتونیکی گرانیت­های منطقه کوه­سرهنگی (شمال غرب بلوک لوت)، مجله پترولوژی، شماره21 (6)، ص  177-197.
Acosta-Gongora. P., Gleeson. S.A., Samson. I.M., Ootes. L., Corriveau. L., 2014, Trace Element Geochemistry of Magnetite and Its Relationship to Cu-Bi-Co-Au-Ag-U-W Mineralization in the Great Bear Magmatic Zone, NWT, Canada, Economic Geology, Vol. 109, p. 1901-1928.
Barret. T.J., Fralick. P.W., Jarvis I., 1988, Rare earth element geochemistry of some Archean iron formations North of Lake Superior, Ontario, Canadian Journal of Earth Science, Vol. 25. p. 570-592.
Berzina. A., 2012, Platinum-group element geochemistry of magnetite from porphyry-Cu-Mo deposits and their host rocks (Siberia, Russia), Acta Geologica Sinica (English Edition), Vol. 86, No. 1, p. 106-117.
Boynton. W.V., 1985, Cosmochemistry of the rare earth elements, Meteorite studies, In: Henderson. P., (eds.) Rare Earth Element Geochemistry, (Developments in Geochemistry 2), Elsevier, Amesterdam, p. 115-1522.
Bonyadi. Z., Davidson. G.J., Mehrabi. B., Meffre. S., Ghazban. F., 2011, Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry, Chemical Geology, Vol. 281, p. 253-269.
Carew. M.J., Mark. G., Oliver. N.H.S., Pearson. N., 2006, Trace element geochemistry of magnetite and pyrite in Fe oxide (+/–Cu–Au) mineralized systems: Insights into the geochemistry of ore-forming fluid, Geochimica et Cosmochimica Acta, Vol. 70, No. 18, p. A83-A83.
Chen. W.T., Zhou. M.F., Li. X., Gao. J.F., Hou. K., 2015, In-situ LA-ICP-MS trace elemental analyses of magnetite: Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, NW India, Ore Geology Reviews, Vol. 65, p. 929-939.
Daliran. F., 1990, The magnetite-apatite deposit of Mishdovan, East Central Iran, An alkali rhyolite hosted, ‘Kiruna type’ occurrence in the Infracambrian Bafg Metallotectonic (Mineralogic, Petro-graphic and geochemical study of the ores and the host rocks), Unpublished Ph.D. thesis, University of Karlsruhe, Karlsruhe, Germany, 248 pp.
Dare. S.A., Barnes. S.J., Beaudoin. G., Méric. J., Boutroy. E., Potvin–Doucet. C., 2014, Trace elements in magnetite as petrogenetic indicators, Mineral. Deposita, Vol. 49, p. 785-796.
David. A.F., Alan. P.M., Mark. A.E., Martin. B., Richard. H.G.J., Charles. M.O., 2004, Calcite twin morphology: a low-temperature deformation geothermometer, Journal of Structural Geology, Vol. 26, p. 1521-1529.
Deer. W.A., Howie. R.A., Zussman. J., 1992, An introduction to the rock-forming minerals (2nd ed). New York: Longman, Harlow, Wiley, 696 p.
De Sitter. J., Govaert. A., De Grave. E., Chamaere. D., Robrecht. G., 1977, Mossbauer study of Ca2+-containing magnetites, Physicochemical Status Solidification, Vol. 43(a), p. 619-624.
Dupuis. C., Beaudoin. G., 2011, Discriminate diagrams for iron oxide trace element fingerprinting of mineral deposit types, Mineralium Deposita, Vol. 46, No. 3, p. 1-17.
Foster. H., Jafarzadeh. A., 1994, The Bafq mining district in Central Iran- a highly mineralized Infracambrian volcanic field, Economic Geology, Vol. 89, No. 8, p. 1697-1721.
Frietsch. R., Perdahl. J.A., 1995, Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types, Ore Geology Reviews, Vol. 9, p. 489-510.
Fryer. B.J., 1977, Rare earth evidence in ironformations for changing Precambrian oxidation states, Geochemica et Cosmochimica Acta, Vol. 41, p. 361-367.
Gosselin. P., Beaudoin. G., Jébrak. M., 2006, Application of the Geochemical Signature of Iron Oxides to Mineral Exploration, GAC–MAC Annual Meeting Prog.
Groshong. R.H.Jr., Pfiffner. O.A., Pringle. L.R., 1984, Strain partitioning in the Helvetic thrust belt of eastern Switzerland from the leading edge to the internal zone, Journal of Structural Geology, Vol. 6, p. 5-18.
Groshong. R.H.Jr., 1988, Low-temperature deformation mechanisms and their interpretation, Bulletin of the Geological Society of America, Vol. 100, p. 1329-1376.
Jami. M., Dunlop. A.C., Cohen. D.R., 2007, Fluid inclusion and stabele isotope study of the Esfordi apatite-magnetite deposite, Central Iran, Economic Geology, Vol. 102, No. 6, p. 1111-1128.
Kato. Y., 1999, Rare Earth Elements as an Indicator to Origins of skarn deposits: Examples of the kamioka Zn-Pb and Yoshiwara-Sannotake Cu(-Fe) deposits in Japan, Resource Geology, Vol. 49 , p.183-198.
Makvandi. Sh., Ghasemzadeh-Barvarz. M., Beaudoin. G., Grunsky. E.C., McClenaghan. M.B., Duchesne. C., Boutroy. E., 2016, Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration, Ore Geology Reviews, Vol. 78, p. 388-408.
Mokhtari. M.A.A., Hosseinzadeh. G., Emami. M.H., 2013, Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry, Journal of Earth System Science, Vol. 122, No. 3, p. 795-807.
Mollo. S., Putirka. K., Iezzi. G., Scarlato. P., 2013, The control of cooling rate on titanomagnetite composition: implications for a geospeedometry model applicable to alkaline rocks from Mt. Etna volcano, Contribiution to Mineralogy and Petrology, Vol. 165, p. 457-475.
Moore. F., Modabberi. S., 2003, Origin of choghart iron oxide deposit, Bafq mining district, central Iran: new isotopic and geochemical evidence, Journal of Sciences, Islamic Republic of Iran, Vol. 14, No. 3, p. 259-269.
Nadoll. P., Mauk. J.L., Hayes. T.S., Koenig. A.E., Box. S.E., 2012, Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States, Economic Geology, Vol. 107, p. 1275-1292.
Nadoll. P., Angerer. T., Mauk. J.L., French. D., Walshe. J., 2014, The chemistry of hydrothermal magnetite: a review, Ore Geology Reviews, Vol. 16, p. 1-32.
Niiranen. T., Manttari. I., Poutiainen. M., Oliver. N., Miller. J.A., 2005, Genesis of Palaeoproterozoic iron skarns in the Misi region, northen Finland, Mineralium Deposita, Vol. 40, p. 192-217.
Nozaem. R., Mohajjel. M., Rossetti. F., Della Seta. M., Vignaroli. G., Yassaghi. A., Salvini. S., Eliassi. M., 2013, Post-Neogene right-lateral strike–slip tectonics at the north-western edge of the Lut Block (Kuh-e-Sarhangi Fault), Central Iran, Tectonophysics, Vol. 589, p. 220-233.
Nyström. J.O., Henriquez. F., 1994, Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry, Economic Geology, Vol. 89, p. 820-839.
Oksuz. N., Koc. S., 2009, Examination of Sarikaya (Yozgat-Turkey) iron mineralization with rare earth element (REE) method, Journal of Rare Earths, Vol. 28, p. 143-156.
Ramezani. J., Tucker. R.D., 2003, The Saghand region, central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics, American Journal of Sciences, Vol. 303, p. 622-665.
Rossetti. F., Nozaem. R., Lucci. F., Vignaroli. G., Gerdes. A., Nasrabadi. M., Theye. T., 2014, Tectonic setting and geochronology of the Cadomian (Ediacaran-Cambrian) magmatism in Central Iran, Kuh-e-Sarhangi region (NW Lut Block), Journal of Asian Earth Sciences, Vol. 102, p. 24-44.
Rowe. K.J., Rutter. E.H., 1990, Paleostress estimation using calcite twinning: experimental calibration and application to nature, Journal of Structural Geology, Vol. 12, p. 1-17.
Rusk. B.G., Oliver. N.H.S., Zhang. D., Brown. A., Lilly. R., Jungmann. D., 2009, Compositions of magnetite and sulfides from barren and mineralized IOCG deposits in the eastern succession of the Mt Isa Inlier, Townsville: Australia Society for Geology Applied to Mineral Deposits, 10th Bi-ennial SGA Meeting, p. 656-658.
Singoyi. B., Danyushevsky. L., Davidson. G., Large. R., Zaw. K., 2006, Determination of trace elements inmagnetites from hydrothermal deposits using the LA–ICP-MS technique. SEG Keystone Conference, Denver, USA CD-ROM.
Tallarico. F.H.B., Figueiredo. B.R., Groves. D.I., Kositcin. N., McNaughton. N.H., Fletcher. IR., Rego. J.L., 2005, Geology and SHRIMP U-Pb geochronology of the Igarape Bahia deposit, Carajas copper-gold belt, Brazil: An Archean (2.57 Ga) example of iron-oxide Cu-Au-(U-REE) mineralization, Economic Geology, Vol. 100, p. 7-28.
Torab. F.M., Lehmann. B., 2007, Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology, Mineralogical Magazine, Vol. 71, No. 3, p. 347-363.
Weber. J.C, Ferrill. D.A., Roden-Tice. Mk., 2001, Calcite and quartz microstructural geothermometry of low-grade metasedimentary rocks, Northen Range, Trinidad, Journal of Structural Geology, Vol.  23, p. 93-112.
Whitney. D.L., Evans. B.W., 2010, Abbreviations for names of rock-forming minerals, American Mineralogist, Vol. 95, p. 185-187.
Xiaowen. H., Liang. Q., Yumiao. M., 2014, Trace element geochemistry of magnetite from the Fe(-Cu) deposits in the Hami region, eastern Tianshan orogenic belt, NW China, Acta Geologica Sinica (English Edition), Vol. 88, No. 1, p. 176-195.
Zarei. A.,Malekzadeh Shafaroudi. A., Karimpour. M.H., 2015, Geochemistry and genesis of iron-apatite ore in Khanlogh deposit, Eastern Cenozoic Quchan-Sabzevar magmatic arc, NE Iran, Acta Geologica Sinica (English Edition), Vol. 88, No. 4, p. 1195-1213.
Zhang. D., Rusk. B., Oliver. N., Dai. T., 2011, Trace element geochemistry of magnetite from the Ernest Henry IOCG deposit, Australia, 11th biennial meeting SGA 2011-Let s talk ore deposits, Antofagasta, Chile.