متاسوماتیسم و تشکیل کرندوم در میگماتیت های منطقه بروجرد، زون سنندج – سیرجان، ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی - دانشگاه پیام نور

2 گروه ژئوشیمی، دانشکده علوم زمین، دانشگاه خوارزمی

3 دانشگاه خوارزمی

چکیده

منطقه بروجرد در زون سنندج – سیرجان، متشکل از سنگ های دگرگونی ناحیه ای است که توسط توده های نفوذی ژوراسیک میانی تحت تاثیر قرار گرفته و دگرگونی مجاورتی در آنها ایجاد شده است. میگماتیت ها بالاترین درجه دگرگونی در هاله مجاورتی هستند. در ناحیه آب بخشان، سنگ های کرندوم دار بصورت بخش های کوچکی در داخل آلبتیتیت ها یا همبری آلبیتیت – میگماتیت دیده می شوند. سنگ های کرندوم دار شامل کرندوم، کردیریت، کلریت، آلبیت، ایلمنیت، روتیل، میکای سفید و آپاتیت هستند. بر اساس محاسبات پزودوسکشن برای سنگ کل، دما و فشار تشکیل این سنگ ها 605 درجه سانتیگراد در 3/3 کیلوبار برآورد شده است. روابط صحرایی بین سنگ های متاسوماتیک (آلبیتیت ها) و سنگ های کرندوم دار، نشان می دهد که متاسوماتیسم در طی تشکیل کرندوم موثر بوده است. در طی متاسوماتیسم Na و تشکیل آلبیتیت، سیالات غنی از Mg-Al تشکیل شده و منجر به متاسوماتیسم Mg و تشکیل کرندوم در میگماتیت ها یا آلبیتیت ها شده اند.

کلیدواژه‌ها

موضوعات


احمدی خلجی. ا.، 1385، پترولوژی توده گرانیتوئیدی منطقه بروجرد. رساله دکترا، دانشکده علوم، دانشگاه تهران.
احمدی خلجی. 1.، طهماسبی. ز.، کشتگر. ش.، 1387، نگرشی نو بر سنگ های دگرگونی منطقه بروجرد، فصلنامه زمین شناسی کاربردی، شماره 2، ص 71-81.
پاپی. ن.، 1394، پتروژنز سنگ های رخساره گرانولیت در هاله مجاورتی کمپلکس بروجرد. پایان نامه کارشناسی ارشد، دانشگده علوم زمین، دانشگاه خوارزمی.
حیدریان منش. ع.، طهماسبی.ز.، احمدی خلجی.ا.، 1395 ، شیمی کانی و دما فشارسنجی سنگهای میگماتیتی منطقه بروجرد) شمال پهنه سنندج سیرجان (، مجله پترولوژی اصفهان، شماره 25 ، ص 117-138.
زارع شولی. م.، طهماسبی. ز.، احمدی خلجی. ا.، ساکی. ع.، 1396، کاربرد زمین شیمیایی عناصر نادر خاکی  REE  جهت مقایسة منشاء میگماتیتها، لوکوسومها و گرانیتهای منطقه بروجرد: دیدگاه اکتشافی. مجله زمین شناسی کاربردی پیشرفته، شماره 26، ص 66-75.
غفاری. م.، 1389، پترولوژی سنگ های دگرگونی جنوب شرقی بروجرد. پایان نامه کارشناسی ارشد، پژوهشکده علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور.
Baldwin. J.A., Powell. R., White. R.W., Štípská. P., 2015. Using calculated chemical potential relationships to account for replacement of kyanite by symplectite in high pressure granulites, Journal of Metamorphic Geology, No: 33, p: 311-330.
Berthier. F., Billiaul. H.P., Halbroronn. B., Marizot. P., 1974. Etude Stratigraphique, petrologique et structural de La region de Khorramabad (Zagros, Iran). These De 3e cycle, Grenoble, France.
Bottrill. R.S., 1998. A corundum-quartz assemblage in altered volcanic rocks, Bond Range, Tasmania. Mineralogical Magazine, No: 62, p: 325-332.
Bucher. K., de Capitani. C., Grapes. R., 2005. The development of a margarite–corundum Blackwall by metasomatic alteration of a slice of mica schist in ultramafic rock, Kvesjöen, Norwegian Caledonides, The Canadian Mineralogist, No:43, p: 129-156.
Butler. B.C.M., 1967. Chemical Study of Minerals from the Moine Schists of the Ardnamurchan Area, Argyllshire, Scotland. Journal of Petrology, No: 8, p: 233-267.
Capitani. C.d., Petrakakis. K., 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software. American Mineralogist, No: 95, p: 1006-1016.
Chowdhury. C., Talukdar. M., Sengupta. P., Sanyal. S., Mukhopadhyay. D., 2013. Controls of P-T path and element mobility on the formation of corundum pseudomorphs in Paleoproterozoic high-pressure anorthosite from Sittampundi, Tamil Nadu, India. American Mineralogist, No: 98, p: 1725-1737.
Demény. A., Sharp. Z.D., Pfeifer. H. R., 1997. Mg-metasomatism and formation conditions of Mg-chlorite-muscovite-quartzphyllites (leucophyllites) of the Eastern Alps (W. Hungary) and their relations to Alpine whiteschists. Contributions to Mineralogy and Petrology, No: 128, p: 247-260.
Dufour. M.S., Kol’tsov. A.B., Zolotarev. A.A., Kuznetsov. A.B., 2007. Corundum-bearing metasomatic rocks in the Central Pamirs. Petrology, No: 15, p: 151-167.
Engvik. A.K., Ihlen. P.M., Austrheim. H., 2014. Characterisation of Na-metasomatism in the Sveconorwegian Bamble Sector of South Norway. Geoscience Frontiers, No: 5, p: 659-672.
Engvik. A.K., Taubald. H., Solli A., Grenne. T., Håkon. Austrheim H., 2018. Dynamic Metasomatism: Stable Isotopes, Fluid Evolution, and Deformation of Albitite and Scapolite Metagabbro (Bamble Lithotectonic Domain, South Norway). Geofluids, No: 22, p: 1-22.
Fadda. S., Fiori. M., Matzuzzi. C., 2014. Genetic aspects of talc-chlorite formation in central Sardinia, Italy: Metamorphism, hydrothermalism and mg-metasomatism: The case of SA matta and SU venosu mines, 14th International Multidisciplinary Scientific Geo Conference SGEM, No: 1, p: 101-112.
Franz. L., Romer. R.L., de Capitani. C., 2013. Protoliths and phase petrology of whiteschists. Contributions to Mineralogy and Petrology, No: 166, p: 255-274.
Hey. M.H., 1954. A new review of the chlorites. Mineralogical Magazine, No: 30, p: 277-292.
Holland. T., Powell. R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of metamorphic Geology, No: 16, p: 309-343.
Rubenach. M.J., Lewthwaite. K.A., 2002. Metasomatic albitites and related biotite-rich schists from a low-pressure polymetamorphic terrane, Snake Creek Anticline, Mount Isa Inlier, north-eastern Australia: microstructures and P–T–d paths. Journal of Metamorphic Geology, No: 20, p: 191-202.
Engvik. A.K., Håkon. A., 2010. Formation of sapphirine and corundum in scapolitised and Mg-metasomatised gabbro. Terra Nova, No: 22, p: 166-171.
Masoudi. F., 1997. Contact metamorphism and pegmatites development in the region SW of Arak, Iran. Unpublished Ph.D. Thesis, University of Leeds, UK, 321p.
Palke. A.C., Renfro. N.D., Berg. R.B., 2017. Melt inclusions in alluvial sapphires from Montana, USA: Formation of sapphires as a restitic component of lower crustal melting? Lithos, No: 278-281, p 43-53.
Coggon. R., Holland. T.J. B., 2002. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. Journal of Metamorphic Geology, No: 20, p: 683-696.
Raimbault. L., Bilal. E., 1993. Trace-element contents of helvite-group minerals from metasomatic albitites and hydrothermal veins at Sucuri, Brazil and Dajishan, China. The Canadian Mineralogist, No: 31, p: 119-126.
Riesco. M., Stüwe. K., Reche. J., 2005. Formation of corundum in metapelites around ultramafic bodies. An example from the Saualpe region, Eastern Alps. Mineralogy and Petrology, No: 83, p: 1-25.
Sarkar. T., Schenk. V., 2014. Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part 1. Petrology and pressure–temperature evolution. Precambrian Research, No: 255, p: 485-509.
Selman. A.M., Moazzen. M., 2012. Origin and Metamorphism of Corundum‐Rich Metabauxites at Mt. Ismail in the Southern Menderes Massif, SW Turkey. Resource Geology, No: 62, p: 243-262.
Simonet. C., Fritsch. E., Lasnier. B., 2008. A classification of gem corundum deposits aimed towards gem exploration. Ore Geology Reviews, No: 34, p: 127-133.
Stocklin. J., 1968. Structural history and tectonics of Iran: a review. AAPG Bulletin, No: 52, p: 1229-1258.
Droop. T.R.G., 1987. A General Equation for Estimating Fe3+ Concentrations in Ferromagnesian Silicates and Oxides from Microprobe Analyses, Using Stoichiometric Criteria, Mineralogical Magazine, No: 51, p: 431-435.
White. R.W., Powell. R., Clarke. G.L., 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. Journal of Metamorphic Geology, No: 20, p: 41-55.
Whitney D.L., Evans B.W., 2010. Abbreviations for names of rock-forming minerals. American mineralogist, No: 95, p: 185.
Yakymchuk. C., Szilas. K., 2018. Corundum formation by metasomatic reactions in Archean metapelite, SW Greenland: Exploration vectors for ruby deposits within high-grade greenstone belts. Geoscience Frontiers, No: 9, p: 727-749.