تعیین جهت تنش های برجا در سازند آسماری تاقدیس رگ سفید با استفاده از نمودار‌های تصویرگر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشکده علوم، دانشگاه بیرجند، بیرجند

2 گروه زمین شناسی دانشگاه بیرجند

چکیده

نمودار های تصویرگر در تاقدیس رگ سفید، دو جهت تنش بیشینه افقی کنونی را نشان می دهند که تحت دو فاز تکتونیکی در دزفول جنوبی شامل چین خوردگی ناشی از همگرایی زاگرس و فعالیت مجدد گسل های پی سنگی توسعه یافته اند. در بخش شرقی شکستگی های کششی القایی و ریختگی ها به ترتیب آزیموت های N25 وN115 دارند. به دلیل عملکرد گسل امتداد لغز هندیجان-ایذه، چرخش راستگرد محور تاقدیس و تغییر در جهت شکستگی‌های القایی در بخش خمیده تاقدیس رخ داده است. از اینرو شکستگی‌های القایی در بخش غربی منحرف شده اند و امتداد N70Eرا نشان میدهند و همچنین ریختگی چاه ها دارای امتداد N160 می باشند. میانگین جهات تنش افقی بیشینه کنونی در بخش های غربی و شرقی تاقدیس به ترتیب N25E وN70E می‌باشد. برآیند جهات تنش بیشینه افقی مشاهده شده در چاه‌های بخش غربی و شرقی تاقدیس رگ سفید در تطابق با جهات کوتاهشدگی افقی بدست آمده با استفاده از حل سازوکار کانونی زلزله ها و حرکت مطلق ورقه عربی در فروافتادگی دزفول می‌باشد. در اثر تجدید فعالیت گسل‌های راستگرد مثل هندیجان-ایذه، علاوه بر چرخش محور تاقدیس، جهت کلی کوتاهشدگی در چین‌های کمربند زاگرس می‌تواند تغییر کند و به دو امتداد در فروافتادگی ذزفول تجزیه گردد.

کلیدواژه‌ها

موضوعات


عقلی، ق.، چرچی، ع.، سلیمانی، ب.،  فردین، ه.، 1393، استفاد از نمودار­های تصویرگر OBMI و UBI در تحلیل ساختاری شکستگی­های سازند در تحلیل ساختار و شکستگی های مخزن آسماری و مقایسه با نمودار­های انحراف سرعت در یکی از میادین غرب ایران، مجله زمین شناسی کاربردی پیشرفته، شماره 11، ص 1-9.
Aadnoy. B.S., 1990, Inversion technique to determine the in-situ stress field from fracturing data, Petrol. Sci. Engin, Vol:4, p: 12-141
Abdollahi Fard. I., Braathen. A., Mokhtari. M., Alavi. S.A., 2006, Interaction of the Zagros Fold thrust belt and the Arabian type, deep-seated folds in the Abadan Plain and the Dezful Embayment, SW Iran, Petroleum Geoscience, Vol: 12, p: 347-362
Bell. J.S., 1996, Petro Geoscience In situ stresses in sedimentary rocks (part 1): measurement techniques, Geosci. Can, Vol:23, p:85-100
Ghanadian. M., Faghih. A., Abdollahie Fard. I., Kusky., T., Maleki. M., 2017, On the role of incompetent strata in the structural evolution of the Zagros fold-thrust belt, Dezful Embayment, Iran, Mar Petrol Geol, Vol:8, p: 320–333
Heidbach. O., Tingay. M.R.P., Barth. A., Reinecker. J., Kurfeb. D., Müller. B., 2009, The World Stress Map based on the database release 2008, Commission of the Geological Map of the World, Paris, p: 46, doi:10.1594/GFZ.WSM.Map2009.
Heidbach. O., Tingay. M.R.P., Barth. A., Reinecker. J., Kurfeb. D., Müller. B., 2010, Global crustal stress pattern based on the World Stress Map database release 2008, Tectonophysics, Vol:482, p:3-15
Kirsch. V., 1898, Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre, Zeitschrift des Vereines Deutscher Ingenieure, Vol:29, p:797-807
Nelson. E.J., 2005, Transverse drilling-induced tensile fractures in the West Tuna area, Gipps land Basin, Australia, implications for the in situ stress regime, Vol:42, p:361-371.
Plumb., R.A., Hickman. S.H., 1985, Stress-induced borehole elongation: A comparison between the Four-Arm Dipmeter and the Borehole Televiewer in the Auburn Geothermal Well, J. Geophys. Res, Vol:90, p:5513-5521
Rajabi. M., Sherkati,. S., Bohloli. B., Tingay. M., 2010, Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran, Tectonophysics, Vol:492, p:192-200
Sepehr. M., Cosgrove. J.W., 2004, Structural framework of the Zagros foldthrust belt, Iran, Marine and Petroleum Geology, Vol:21, p:829-843
Serra. O., 1989, Formation MicroScanner image interpretation. Schlumberger Educational Services.
Soleimani. B., Amiri. K., Samani. B., Shaban. L., 2016, Lithology effects on the fractures parameters using image log and petrophysical data, Russian journal of earth scince, Vol:16, p:1-11, doi:10.2205/2016ES000581
Tingay. M.R.P., Reinecker. J., Müller. B., 2008, Borehole breakout and drilling-induced fracture analysis from image logs, World Stress Map Project Stress Analysis Guidelines, http://www.world-stress-map.org.
Tingay. M.R.P., Hillis. R.R., Morley. C.K., King. R.C., Swarbrick. E., Damit. A.R., 2009, Present-day stress and neotectonics of Brunei: implications for petroleum exploration and production, AAPG Bull, Vol:93, p:75-100
Tingay. M.R.P., Morley C.K., Hillis. R.R. Meyer. J., 2010, Present-day stress orientation in Thailand's basins, J. Struct. Geol, Vol:32, p:235-248
Ye., S., Rabiller. P., 1998, Automated fracture detection on high resolution resistivity borehole imagery, SPE annual technical conference and exhibition, Society of Petroleum Engineers, New Orleans, Louisiana, p: 777-784. https://doi:10.2118/49300-MS
Zoback. M.L., Moun. V.S., Suppe. J., Eaton. J.P., Healy. J.H., Oppenheimer. D., Reasenberg. P., Jones. L., Raleigh. C.B., Wong. I.G., Scotti. O., Wentworth. C., 1987, New evidence on the state of stress of the San Andreas Fault system, Science, Vol:238, p:1105-1111
Zoback. M.D., 1995, Compressive and tensile failure of inclined well bores and determination of in situ and rock strength, J. Geophys. Res, Vol:100, p:12791-12811