سن سنجی 40Ar/39Ar و شیمی کانی‌ میکای سفید فنژیتی در ارتوگنایس‌های چشمی صادق آباد، شمال شهرکرد (پهنه سنندج ـ سیرجان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران

2 دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد

چکیده

ارتوگنایس‌های کمپلکس دگرگونی شمال شهرکرد بخشی از پی‌سنگ پان آفریکن ایران در بخش مرکزی پهنه سنندج  ـ سیرجان بوده که به­صورت بلوک‌ها و  توده‌های کوچک و متوسط همراه با آمفیبولیت‌ها رخنمون دارند. کانی‌های تشکیل دهنده این سنگ‌ها شامل کوارتز و فلدسپات آلکالن (بصورت پرتیت و میکروکلین)، پلاژیوکلاز، بیوتیت، میکای سفید و کلریت می‌باشد که میکاهای سفید به همراه بیوتیت­ها برگواره میلونیتی سنگ را تشکیل می‌دهند. آنالیزهای نقطه‌ای انجام شده بر روی کانی‌ میکای سفید نشان می‌دهد که این کانی دارای ترکیب نوع مسکویت فنژیتی هستند. سن سنجی به روش 40Ar/39Ar  بر روی کانی‌های میکای سفید فنژیتی این ارتوگنایس چشمی، میانگین وزنی سن سرد‌شدگی آنها برابر با 9/0±8/162 میلیون سال قبل را بدست می‌دهد که برابر با انتهای ژوراسیک میانی (اشکوب کالووین) است. با در نظر گرفتن ترکیب شیمیایی مسکویت‌های فنژیتی، روابط ریزساختاری و ترکیب کانی‌شناسی سنگ‌های مورد مطالعه، پیشنهاد می‌گردد که این سن نشان­دهنده زمان میلونیتی شدن و همچنین زمان دگرگونی رخساره آمفیبولیت پس از اوج دگرگونی فشار بالا می‌باشد.این یافته‌ها در ارایه یک مدل برای نرخ سربرآوری و تاریخچه حرارتی ارتوگنایس‌های منطقه مورد مطالعه به عنوان بخشی از کوهزایی زاگرس کاربرد دارد.

کلیدواژه‌ها

موضوعات


اسدی. س.، شریف پور. ش.، محمودی. ا.، 1395، زمین‌دماسنجی زیرکنیم در رگه‌های کوارتز روتیل‌دار، کمپلکس آتشفشانی ـ رسوبی سوریان، زمین­شناسی کاربردی پیشرفته، شماره 6، ص 29  ـ 34.
داودی. ا.، شبانیان بروجنی. ن.، داودیان دهکردی. ع.، 1392، ارزیابی ویژگی‌های مورفوتکتونیک رودخانه زاینده‌رود در شمال­شرقی استان چهارمحال و بختیاری، زمین­شناسی کاربردی پیشرفته، شماره 3، ص 10      ـ      19.
داودیان دهکردی. ع.، 1372، پترولوژی سنگ‌های دگرگونی شمال شهرکرد، پایان­نامه کارشناسی ارشد، دانشگاه اصفهان، ص 193.
داودیان دهکردی. ع.، 1384، تحول تکتونومتامورفیسم در ناحیه شهرکرد  ـ  داران(زون سنندج سیرجان)، پایان­نامه دکتری، دانشگاه اصفهان، اصفهان.
زاهدی. م.، 1371، نقشه زمین‌شناسی چهارگوش شهرکرد، مقیاس 1:250000، سازمان زمین‌شناسی کشور .
شبانیان بروجنی. ن.، 1377، تحلیل پترولوژیکی بر سنگ­های دگرگونی شمال دریاچه زاینده رود با نگرشی ویژه به پلی­متامورفیسم، پایان­نامه کارشناسی ارشد، دانشگاه اصفهان.
Azizi. H., Chung. S. ـL., Tanaka. T., Asahara. Y., 2011, Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: a significant revision of the formation age and magma source, Precambrian Research, Vol: 185, p: 87  ـ   94.
Badr. M.J., Collins. A.S., Masoudi. F., 2013, The U      ـ      Pb age, geochemistry and tectonic significance of granitoids in the Soursat Complex, Northwest Iran, Turkish Journal of Earth Sciences, Vol: 22, p: 1  ـ 31.
Dachs. E., 2004, ET: petrological elementary tools for Mathematica. Computers and Geosciences, Vol: 30, p: 173  ـ      182.
Davoudian. A.R., Genser. J., Dachs. E., Shabanian. N., 2008, Petrology of eclogites from north of Shahrekord, Sanandaj  ـ Sirjan Zone, Iran, Mineralogy and Petrology, Vol: 92, p: 393  ـ  413.
Davoudian. A.R., Genser. J., Neubauer. F., Shabanian. N., 2016, 40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj–Sirjan Zone, Iran: Implications for the tectonic evolution of Zagros orogen, Gondwana Research, Vol: 37, p: 216  ـ 240.
Deer. W.A., Howie. R.A., Zussman. J., 1992, An introduction to the rock ـ forming minerals, Longman London.
D'Lemos. R.S., Strachan. R.A., Topley. C., 1990, The Cadomian Orogeny, Geological Society of London, Special Publication no, Vol: 51, p: 423 pp.
Droop. G.T.R., 1987, A general equation for estimating Fe+3 concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineralogical Magazine Vol: 51, p: 431 ـ  435.
Faure. G., Mensing. T.M., 2005, Isotopes: principles and applications, Wiley Hoboken, NJ.
Guidotti. C., 1969, A comment on ‘Chemical study of minerals from the Moine Schists of the Ardnamurchan area, Argyllshire, Scotland’, by BCM Butler, and its implications for the phengite problem, Journal of Petrology, Vol: 10, p: 164  ـ  170.
Gürsu. S., Göncüoglu. M., 2005, Early Cambrian back  ـ  arc volcanism in the western Taurides, Turkey: implications for rifting along the northern Gondwanan margin, Geological Magazine, Vol: 142, p: 617 ـ 631.
Harrison. T.M., 1982, Diffusion of 40Ar in hornblende, Contributions to Mineralogy and Petrology, Vol: 78, p: 324  ـ      331.
Harrison. T.M., Célérier. J., Aikman. A.B., Hermann. J., Heizler. M.T., 2009, Diffusion of 40Ar in muscovite, Geochimica et Cosmochimica Acta, Vol: 73, p: 1039 ـ 1051.
Hassanzadeh. J., Stockli. D.F., Horton. B.K., Axen. G.J., Stockli. L.D., Grove. M., Schmitt. A., Walker. J.D., 2008, U      ـPb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: implications for paleogeography, magmatism, and exhumation history of Iranian basement, Tectonophysics, Vol: 451, p: 71 ـ96.
Hermann. J., 1997, Experimental constraints on phase relations in subducted continental crust, Contributions to Mineralogy and Petrology, Vol: 143, p: 219 ـ   235.
Klemd. R., Matthes. S., Okrusch. M., 1991, High ـ pressure relics in meta ـ  sediments intercalated with the Weissenstein eclogite, Münchberg gneiss complex, Bavaria, Contributions to Mineralogy and Petrology, Vol: 107, p: 328 ـ  342.
Kurz. W., Handler. R., Bertoldi. C., 2008, Tracing the exhumation of the Eclogite Zone (Tauern Window, Eastern Alps) by 40Ar/39Ar dating of white mica in eclogites, Swiss Journal of Geosciences, Vol: 101, p: 191 ـ  206.
Lister. G.S., Baldwin. S.L., 1996, Modelling the effect of arbitrary P ـ  T   ـ t histories on argon diffusion in minerals using the MacArgon program for the Apple Macintosh, Tectonophysics, Vol: 253, p: 83 ـ   109.
Liu. X., Jahn. B ـ m., Dong. S., Lou. Y., Cui. J., 2008, High  ـ pressure metamorphic rocks from Tongbaishan, central China: U–Pb and 40Ar/39Ar age constraints on the provenance of protoliths and timing of metamorphism, Lithos, Vol: 105, p: 301 ـ 318.
Ludwig. K., 2009, Isoplot 4.1. A geochronological toolkit for Microsoft Excel, Berkeley Geochronology Center Special Publication, 4, 76.
McDougall. I., Harrison. T.M., 1999, Geochronology and Thermochronology by the 40Ar/39Ar Method, Oxford University Press.
Miller. C.F., Stoddard. E.F., Bradfish. L.J., Dollase. W.A., 1981, Composition of plutonic muscovite: genetic implications, Canadian Mineralogist, Vol: 19, p: 25 ـ  34.
Moghadam. H.S., Khademi. M., Hu. Z., Stern. R.J., Santos. J.F., Wu. Y., 2015, Cadomian (Ediacaran–Cambrian) arc magmatism in the ChahJam–Biarjmand metamorphic complex (Iran): magmatism along the northern active margin of Gondwana, Gondwana Research, Vol: 27, p: 439  ـ  452.
Ramezani. J., Tucker. R.D., 2003, The Saghand region, Central Iran: U ـ  Pb geochronology, petrogenesis and implications for Gondwana tectonics, American Journal of Science, Vol: 303, p: 622 ـ 665.
Scaillet. S., 2000, Numerical error analysis in 40Ar/39Ar dating, Chemical Geology, Vol: 162, p: 269ـ   298.
Shafaii Moghadam. H., Li. X.H., Stern. R.J., Santos. J.F., Ghorbani. G., Pourmohsen. M., 2016, Age and nature of 560–520 Ma calc ـ  alkaline granitoids of Biarjmand, northeast Iran: insights into Cadomian arc magmatism in northern Gondwana, International Geology Review, Vol: 58, p: 1492      ـ      1509.
Shakerardakani. F., Neubauer. F., Masoudi. F., Mehrabi. B., Liu. X., Dong. Y., Mohajjel. M., Monfaredi. B., Friedl. G., 2015, Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud–Azna region (NW Iran): Laser  ـ ablation ICP–MS zircon ages and geochemistry, Tectonophysics, Vol: 647, p: 146 ـ 171.
Steiger. R.H., Jäger. E., 1977, Subcommission on geochronology: convention on the use of decay constants in geo  ـ and cosmochronology, Earth and planetary science letters, Vol: 36, p: 359  ـ 362.
Stuart.F., 2002, The exhumation history of orogenic belts from 40Ar/39Ar ages of detrital micas, Mineralogical Magazine, Vol: 66, p: 121 ـ 135.
Villa.I.M., 1998, Isotopic closure, Terra Nova, Vol: 10, p: 42 – 47.