Evaluation of active structure effect on subsidence hazard insight to Analytical Hierachy Process

Authors

1 Assistant Professor Geology Department of Urmia university

2 Msc Student of Tectonics, Urmia university Iran

Abstract

     The study area at northwest of Marzan Abad contains typical faults. Considering the role of faults on landslide and subsidence events following that disaster of civil structures especially electricity pylons of this region, the subsidence potential map and capability of subsidence as result of tectonic structures were evaluated. Based on the trend of faults at this region (F1 to F9), conclude that F1 to F5 faults are synthetic and show gouge along the fault zones. F6 and F7 faults are between thick bedded limestone at the northern and southern parts. The fault of F8 at NE-SW trend, contains fault breccia has been caused unstability and landslide at the main road. The shear zone of F9 fault is wide and composed of several faults made unstability of pylons. AHP (Analytical Hierachy Process) defines that geologolical processes, e.g., joints and fracture faults have caused the failure surfaces and also unstability. Field studies, DEM maps, dip and drainage patterns, and also subsidence hazard map have been cleared that the southern parts are more risky than the other parts then the civil structures should be displaced. This study can be used to improve structures in danger of slipping and average subsidence and displacement of structures that are in high-risk areas, to be used. Therfore with using of methods discribed in this paper, we can avoid to contructing of structure in the high risk zone.
 

Keywords


وحدتی دانشمند، ف.،1379. نقشه زمین شناسی 1:100000 چهارگوش مرزن آباد، سازمان زمین شناسی و اکتشافات معدنی کشور.
صابری .عظیم، رنگزن. ک، مهجوری. ر، کشاورزی.م.ر، پتانسیل­یابی منابع آب زیر­زمینی با تلفیق سنجش از دور و GIS به روش تحلیل سلسله مراتبی (AHP)  در تاقدیس کمستان استان خوزستان، مجله زمین شناسی کاربردی پیشرفته دانشگاه شهید چمران اهواز ،زمستان 91،چاپ 6،  صفحه 11-20.
محمودی دهشتران. س، حجت.آ، رنجبر.ح، کریمی نسب.س،تعیین محدوده­های در معرض نشست حاصل از وجود قنات­های پنهان در محدوده دانشگاه شهید باهنر کرمان با استفاده از سنجش از دور و سامانه اطلاعات جغرافیایی،مجله زمین شناسی کاربردی پیشرفته دانشگاه شهید چمران اهواز، بهار 95،شماره 19، صفحه 75-81.
 
Abidin, H. Z., Gumilar, I., Andreas, H., Murdohardono, D., & Fukuda, Y. (2013). On causes and impacts of land subsidence in Bandung Basin, Indonesia. Environmental earth sciences, 68(6), 1545-1553.
Ayalew, L., Yamagishi, H., Marui, H., & Kanno, T. (2005). Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engineering Geology, 81(4), 432-445.
Cahalan, M. D. (2015). Sinkhole Formation Dynamics and Geostatistical-based Prediction Analysis in a Mantled Karst Terrain (Doctoral dissertation, University of Georgia).
Galloway, D. L., & Burbey, T. J. (2011). Review: regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459-1486.
Galve, J. P., Gutiérrez, F., Remondo, J., Bonachea, J., Lucha, P., & Cendrero, A. (2009). Evaluating and comparing methods of sinkhole susceptibility mapping in the Ebro Valley evaporite karst (NE Spain). Geomorphology, 111(3), 160-172.
Gorsevski, P. V., Jankowski, P., & Gessler, P. E. (2006). Heuristic approach for mapping landslide hazard integrating fuzzy logic with analytic hierarchy process. Control and Cybernetics, 35(1), 121.
Li, S., Li, S., Zhang, Q., Xue, Y., Ding, W., Zhong, S., ... & Lin, Y. (2007). Forecast of Karst-fractured groundwater and defective geological conditions [J]. Chinese Journal of Rock Mechanics and Engineering, 2, 000.
Mezughi, T. H., Akhir, J. M., Rafek, A. G., & Abdullah, I. (2012). Analytical hierarchy process method for mapping landslide susceptibility to an area along the EW highway (Gerik-Jeli), Malaysia. Asian Journal of Earth Sciences, 5(1), 13.
Modoni, G., Darini, G., Spacagna, R. L., Saroli, M., Russo, G., & Croce, P. (2013). Spatial analysis of land subsidence induced by groundwater withdrawal. Engineering geology, 167, 59-71.
Phukon, P., Chetia, D., & Das, P. (2012). Landslide susceptibility assessment in the Guwahati city, Assam using analytic hierarchy process (AHP) and geographic information system (GIS). Int J Comput Appl Eng Sci, 2(1), 1-6.
Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281.
Saaty, T. L., & Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process (Vol. 175). Springer Science & Business Media.
Stokes, T., Griffiths, P., & Ramsey, C. (2010). Karst Geomorphology, Hydrology, and Management. Compendium of forest hydrology and geomorphology in British Columbia. BC Min. For. Range, 66, 373.
Waltham, T. (2008). Sinkhole hazard case histories in karst terrains. Quarterly Journal of Engineering Geology and Hydrogeology, 41(3), 291-300.
Wu, C. H., & Chen, S. C. (2009). Determining landslide susceptibility in Central Taiwan from rainfall and six site factors using the analytical hierarchy process method. Geomorphology, 112(3), 190-204.
Yalcin, A., Reis, S., Aydinoglu, A. C., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3), 274-287.
Zeitoun, D.G., Wakshal, E., 2013. Land subsidence analysis in urban areas: the Bangkok metropolitan area case study. Springer Science & Business Media.
Zhu, L., Gong, H., Li, X., Wang, R., Chen, B., Dai, Z., & Teatini, P. (2015). Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Engineering Geology, 193, 243-255.