کاربرد داده های ژئوشیمیایی در تعیین الگوی تشکیل ذخایر فلزات پایه با میزبان رسوبی- مطالعات موردی، معادن روی- سرب- (نقره- باریم) حوضه معدنی ایرانکوه اصفهان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته زمین دکتری شناسی اقتصادی، گروه زمین شناسی، دانشکده علوم پایه، دانشگاه تربیت مدرس تهران

2 عضو هیئت علمی گروه زمین شناسی اقتصادی دانشگاه تربیت مدرس تهران

3 گروه زمین شناسی، دانشکده زمین شناسی مهندسی، دانشگاه Firat ترکیه

چکیده

کانسارهای روی- سرب- (نقره- باریم) حوض معدنی ایرانکوه اصفهان در توالی آتشفشانی- رسوبی کرتاسه زیرین ، در یک محیط کافت پشت کمانی و مجله گسلهای نرمال با رسوبگذاری تشکیل گردیده است. بر اساس ماهیت کانیزایی سولفیدی ، می تواند سه رخساره کانسنگ سولفیدی زون تغذیه کننده ، تودهای و لایهای را از طریق تغییر متمایز کند که دارای ارتباط تنگاتنگ با دگرسانی های سیلیسی ، دولومیتی و به میزان کمتری است. بر اساس مطالعات میکروسکوپی و مطالعات زمین شیمیایی از جمله EPMA و کاتدولومینسانس ، دو نوع رخداد دولومیتی شدن به ناحیه (دیاژنزی) و دولومیتی شدن هیدروترمالی را می توان در حوضه معدنی ایران از سایر جزئیات نشان داد. نتایج مطالعات EPMA و میان بارهای سیال حاکی از آن است که دو نوع سیال با دو منشأ متفاوت در تشکیل کانسارهای حوضه معدنی ایرانکوه نقش بیشتری دارد: (1) سیالات هیدروترمالی دما (260-85 درجه) که بر اساس مقادیر نسبت عناصر Th / U واحدهای میزبان
کانهزایی ، ماهیت احیایی داشته و منشأ آنها را با سیالات بین سازند و سیالات دریایی فرورو درگیر کرده است ، (2) آب دریایی فرو که دارای مقادیر پایین تر از عناصر منگنز است و همچنان وجود دارد و به دوومیتی تبدیل می شود و به هیچ وجه آهیک گردیده است. بر اساس نتایج حاصل از مطالعه میان بارهای سیال ، سیالات هیدروترمالی در دو محدوده دمایی و شوری قرار میگیرند. سیالات زون تغذیه کننده ، دارای دماهای بالا (260-120 درجه) و شوری پایین (3 / 23-7 / 8 درصد) هستند که در صورت ایجاد رخداد در کانسنگ سولفید تودهای ایجاد می شوند و احتمالاً به دلیل عدم انتخاب آنها با آب دریایی فرو ، آنها را کاهش می دهد ( 180-85 درجه) و شوری آنها را افزایش می دهد (3 / 23-8 / 16) پیدا شده است. با مطالعه داده های زمین شیمیایی از جمله مطالعه میان بارهای سیال و همراهی کانزایی کم عیار و پرعیار با میان بارهای با درجه حرارت و شوری مختصر به خود و طوفان آنها را با داده های زمین شناسی از جمله جایگاه های معتبر و نرم افزاری که در کنار هم بودن آنها با کانهزایی سولفیدی پرعیار و کم عیار است. ، ممکن است زونهای پرعیار (رخساره کانسنگ سولفید تودهای با دمای متوسط ​​و شوری بالا) و کم عیار (رخساره زون تغذیه کننده با دمای بالا و شوری پایین) را از لحاظ تفکیک نمایان کند. بررسی ویژگی های زمین شیمیایی از جمله دما و شوری میان بارهای سیال و رخداد کانزایی در یک محیط احیائی در هر روحی با مطالعات ساختاری ، ساخت و ساخت و کانسیک و مقایسه آنها با ویژگی های شاخص انواع کانال های سرب و روی با میزبان رسوبی نشان می دهد که کانرهای حوضه معدن است. ایرانکوه بیشترین شباهت را با کانسارهای سرب و روی نوع سدکس از نوع جانشینی در زیر کف دریا دارند.

کلیدواژه‌ها


بویری کناری. م.، 1394. رخساره­های کانسنگ سولفیدی و الگوی تشکیل کانه­زایی روی- سرب با سنگ میزبان آواری- کربناته در کانسار تپه سرخ، منطقه معدنی ایرانکوه، جنوب اصفهان، رساله دکتری زمین­شناسی اقتصادی دانشگاه تربیت مدرس تهران، 415 صفحه.
بویری کناری. م.، راستاد. ا.، محجل. م.، ناکینی. ع.، حق­دوست. م.، 1394، ساخت و بافت، کانی­شناسی و چگونگی تشکیل رخساره­های سولفیدی در کانسار روی- سرب- (نقره) تپه سرخ با سنگ میزبان آواری- کربناتی، جنوب اصفهان. فصلنامه علوم زمین، شماره 25، جلد 97، صفحه 236-221.
سهندی. م.، رادفر. ج.، حسین­دوست. ج.، محجل. م.، 1385، نقشه 1:100000 شازند، سازمان زمین­شناسی و اکتشافات معدنی کشور.
کریم­زاده. ز.، مهرابی. ب.، بازرگانی گیلکی. ک.، 1394، بررسی نحوه کانی‌سازی و تشکیل کانسار سرب و روی خانه­سورمه (غرب اصفهان) بر اساس شواهد کانی­شناسی، زمین‌شیمی و سیالات درگیر. مجله زمین­شناسی کاربردی پیشرفته، شماره 17، صفحه 84-72.
مر. ف.، اسدی. س.، فتاحی. ن.، 1390، زمین­شیمی و زمین­دماسنجی کانسار مس جیان (بوانات)، زون سنندج- سیرجان، شمال شرق استان فارس. مجله زمین­شناسی کاربردی پیشرفته، شماره 1، جلد 1، صفحه 93-80.
ناکینی. ع.، 1392، تحلیل ساختاری مناطق ایرانکوه و تیران، جنوب و غرب اصفهان. پایان­نامه کارشناسی ارشد، دانشگاه تربیت مدرس تهران، 181 صفحه.
ناکینی. ع.، محجل. م.، راستاد. ا.، بویری کناری. م.، 1394، چین­خوردگی و گسلش در گسترە معدنی ایرانکوه، جنوب اصفهان. مجله یافته­های نوین در ‌زمین­شناسی‌‌‌‌ (نشریه ‌علوم‌ دانشگاه‌ خوارزمی)، ‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌جلد 1، شمارە 2، صفحه 255-235.
یارمحمدی، ع. 1394، رخساره­های کانسنگ سولفیدی، ماهیت و منشأ سیالات کانه­دار و الگوی تشکیل ذخایر روی- سرب با سنگ درونگیر آواری- کربناته در بخش بالایی کرتاسه زیرین، منطقه معدنی شمال تیران (شمال­غرب اصفهان). رساله دکتری زمین­شناسی اقتصادی، دانشگاه تربیت مدرس تهران، 390 صفحه.
Bischoff. J.L., Rosenbauer. R.J., 1985, An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). American Journal of Science, vol: 285, p: 725-763.
Bouabdellah. M., Sangster. D.F., Leach. D.L., Brown. A.C., Johnson. C.A., Emsbo. P., 2012, Genesis of the touissit-bou beker Mississippi valley-type district (Morocco-Algeria) and its relationship to the Africa-Europe collision. Economic Geology, vol: 107, p: 117-146.
Boveiri Konari. M., Rastad. E., Peter. J.M., 2017, A sub-seafloor hydrothermal syn-sedimentary to early diagenetic origin for the Gushfil Zn-Pb-(Ag-Ba) deposit, south Esfahan, Iran. N. Jb. Miner. Abh. (J. Min. Geochem.), vol: 194(1), p: 61–90.
Cooke. D.R., Bull. S.W., Large. R.R., McGoldrick. P.J., 2000, The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb-Zn (Sedex) deposits. Economic Geology, vol: 95, p: 1-18.
Davies. G.R., Smith Jr. L.B., 2006, Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG bulletin, vol: 90, p: 1641-1690.
Gadd. M., Layton-Matthews. D., Peter, J., Paradis. S., 2015, In situ trace element and sulphur isotope analyses of pyrite constrain timing of mineralization and sources of sulphur in the Howard’s Pass SEDEX Zn-Pb District, Yukon. Targeted geoscience initiative, vol: 4, p: 58-74.
Gadd. M.G., Layton-Matthews. D., Peter. J.M., Paradis. S.J., 2016, The world-class Howard’s Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part I: trace element compositions of pyrite record input of hydrothermal, diagenetic, and metamorphic fluids to mineralization. Mineralium Deposita, vol: 51, p: 319-342.
Ghazban. F., McNutt. R.H., Schwarczm H.P., 1994, Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, west-central Iran. Economic Geology, vol: 89, p: 1262-1278.
Goodfellow. W., Lydon. J., 2007a, Sedimentary exhalative (SEDEX) deposits. Mineral deposits of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, p: 163-183.
Goodfellow. W.D., Lydon. J.W., 2007b, Sedimentary exhalative (SEDEX) deposits. In: Goodfellow. W.D., (ed.) Mineral deposits of Canada: a synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, p: 163–183.
Goodfellow. W.D., Lydon. J.W., Turner. R.J.W., 1993, Geology and genesis of stratiform sediment-hosted (SEDEX) Zn-Pb-Ag sulphide deposits. In: Kirkham. R.V., Sinclair. W.D., Thorpe. R.I., Duke. J.M., (eds.), Mineral Deposit Modeling. Geological Association of Canada, Special Paper 40, p: 201-251.
Grandia. F., Cardellach. E., Canals. À., Banks. D.A., 2003, Geochemistry of the fluids related to epigenetic carbonate-hosted Zn-Pb deposits in the Maestrat Basin, Eastern Spain: fluid inclusion and isotope (Cl, C, O, S, Sr) evidence. Economic Geology, vol: 98, p: 933-954.
Gromet. L.P., Haskin. L.A., Korotev. R.L., Dymek. R.F., 1984, The “North American shale composite”: its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, vol: 48, p: 2469-2482.
Hanor, J.S., 1979, The sedimentary genesis of hydrothermal fluids. In: Barnes, H.L. (ed.), Geochemistry of hydrothermal ore deposits: New York. Wiley Interscience, p. 137-142.
Hitzman. M., Redmond. P., Beaty. D., 2002, The Carbonate-Hosted Lisheen Zn-Pb-Ag Deposit, County Tipperary, Ireland. Economic Geology, vol: 97, p: 1627-1655.
Hosseini-Dinani. H., Aftabi. A., 2016, Vertical lithogeochemical halos and zoning vectors at Goushfil Zn–Pb deposit, Irankuh district, southwestern Isfahan, Iran: Implications for concealed ore exploration and genetic models. Ore Geology Reviews, vol: 72, p: 1004-1021.
Jehlicka. J., 2001, Sedimentary Geochemistry. Geophysics and Geochemistry 3.
Kamona, A., Friedrich. G., 2007, Geology, mineralogy and stable isotope geochemistry of the Kabwe carbonate-hosted Pb–Zn deposit, Central Zambia. Ore Geology Reviews, vol: 30, p: 217-243.
Kelley. K., Leach. D., Johnson. C., Clark. J., Fayek. M., Slack. J., Anderson. V., Ayuso. R., Ridley. W., 2004b, Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: implications for ore formation. Economic Geology, vol: 99, p: 1509-1532.
Kelley. K.D., Dumoulin. J.A., Jennings. S., 2004a, The Anarraaq Zn-Pb-Ag and Barite Deposit, Northern Alaska: Evidence for Replacement of Carbonate by Barite and Sulfides. Economic Geology, vol: 99, p: 1577–1591.
Kerr. N., 2013, Geology of the Stonepark Zn-Pb prospects, County Limerick, Ireland. M.Sc. thesis, University of Colorado, 131p.
Large. R.R., Bull. S.W., Cooke. D.R., McGoldrick. P.J., 1998, A genetic model for the HYC Deposit, Australia; based on regional sedimentology, geochemistry, and sulfide-sediment relationships. Economic Geology, vol: 93, p: 1345-1368.
Leach. D.L., Bradley. D.C., Huston. D., Pisarevsky. S.A., Taylor. R.D., Gardoll. S.J., 2010, Sediment-hosted lead-zinc deposits in Earth history. Economic Geology, vol: 105, p: 593–625.
Leach. D.L., Sangster. D.F., 1993, Mississippi Valley-type lead-zinc deposits. In: Kirkham, R.V., et al. (eds.), Mineral Deposit Modeling. Geological Association of Canada, vol: 40, p: 289-314.
Leach. D.L., Sangster. D.F., Kelley. K.D., Large. R.R., Garven. G., Allen. C.R., Gutzmer. J., Walters. S., 2005, Sedimenthosted lead-zinc deposits: A global perspective. Economic Geology, 100th anniversary volume, p: 561–607.
Machel. H., 1979, Fazies und Diagenese der devonischen Riffkarbonate der Bohrung Romberg (Briloner Riff): Unpub. Diplomarbeit, Technische Universitat Braunschweig.
Magnall. J.M., 2015, Sediment-Hosted Pb-Zn-Ba Mineralisation at Macmillan Pass, Yukon (Canada) –Hydrothermal Fluid Chemistry and Mineralising Processes. Ph.D. thesis, University of Alberta, 344 p.
Mohajjel. M., Fergusson, C.L., 2014, Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, vol: 56(3), p: 263-287.
Momenzadeh. M., 1976, Stratabound lead–zinc ores in the lower Cretaceous and Jurassic sediments in the Malayer–Esfahan district (west central Iran), lithology, metal content, zonation and genesis. Ph.D. thesis, University of Heidelberg, 300 p.
Montanez. I.P., 1994, Late diagenetic dolomitization of Lower Ordovician Upper Knox carbonates: A record of the hydrodynamic evolution of the southern Appalachian Basin. AAPG. Bull, vol: 78 (8), p: 1210-1239.
Nath. B.N., Bau. M., Rao. B.R., Rao. C.M., 1997, Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochimica et Cosmochimica Acta, vol: 61, p: 2375-2388.
Nelson. J., 1997, The quiet counter-revolution: Structural control of syngenetic deposits. Geoscience Canada 24.
Pfaff. K., Hildebrandt. L.H., Leach. D.L., Jacob. D.E., Markl. G., 2010, Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany. Mineralium Deposita, vol: 45, p: 647-666.
Pierson. B.J., 1981, The control of cathodoluminescence in dolomite by iron and manganese. Sedimentology, vol: 28, p: 601-610.
Pollack. G.D., 2008, Timing and characterization of the change in the redox state of uranium in Precambrian surface environments: A proxy for the oxidation state of the atmosphere.
Qing. H., Mountjoy. E.W., 1994, Rare earth element geochemistry of dolomites in the Middle Devonian Presqu'ile barrier, Western Canada Sedimentary Basin: implications for fluid‐rock ratios during dolomitization. Sedimentology, vol: 41, p: 787-804.
Rajabi. A., Rastad. E., Canet. C., 2012b, Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. International Geology Review, vol: 54(14), vol: 1649–1672.
Rastad. E., 1981, Geologicul, Mineralogical and ore facies investigation on the Lower Creataceous Stratabound Zn–Pb (Ba–Cu) Deposits of the irankuh Mountair Range Isfahan–West Central Iran. Ph.D. Thesis, Ruprecht–Karl–University, Heidelberg, 334 p.
Richter. D.K., Zinkernagel. U., 1981, Zur Anwendung der Kathodolumineszenz in der Karbonatpetrographie. Geologische Rundschau, vol: 70, p: 1276-1302.
Sangster. D.F., 2002, The role of dense brines in the formation of vent-distal sedimentary exhalative (SEDEX) lead-zinc deposits: field and laboratory evidence. Mineralium Deposita, vol: 37, p: 149–157.
Spangenberg. J.E., Herlec. U., 2006, Hydrocarbon biomarkers in the Topla-Mežica zinc-lead deposits, northern Karavanke/Drau Range, Slovenia: Paleoenvironment at the site of ore formation. Economic Geology, vol: 101, p: 997-1021.
Ströbele, F., Hildebrandt, L.H., Baumann, A., Pernicka, E. and Markl, G. (2015) Pb isotope data of Roman and medieval objects from Wiesloch near Heidelberg, Germany. Archaeological and Anthropological Sciences, vol: 7, p: 465-472.
Sun. S.S., McDonough. W.S., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42, p: 313-345.
Tribovillard. N., Algeo. T.J., Lyons. T., Riboulleau. A., 2006, Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, vol: 232, p: 12–32.
Velasco. F., Herrero. J.M., Yusta. I., Alonso. J.A., Seebold. I., Leach. D., 2003, Geology and geochemistry of the Reocin zinc-lead deposit, Basque-Cantabrian Basin, Northern Spain. Economic Geology, vol: 98, p: 1371-1396.
Wilkinson. J., Eyre. S., Boyce. A., 2005, Ore-forming processes in Irish-type carbonate-hosted Zn-Pb deposits: Evidence from mineralogy, chemistry, and isotopic composition of sulfides at the Lisheen mine. Economic Geology, vol: 100, p: 63-86.
Wilkinson. J.J., 2003, On diagenesis, dolomitisation and mineralization in the Irish Zn-Pb orefield. Mineralium Deposita, vol: 38, p: 968–983.
Wilkinson. J.J., 2014, Sediment-hosted zinc-lead mineralization: processes and perspectives. Treatise on Geochemistry 2nd edition, p: 219-249.
Wilkinson. J.J., Crowther. H.L., Coles. B.J., 2011, Chemical mass transfer during hydrothermal alteration of carbonates: Controls of seafloor subsidence, sedimentation and Zn–Pb mineralization in the Irish Carboniferous. Chemical Geology, vol: 289, p: 55–75.
Wingal. P.B., Twitchett. R.J., 1996, Oceanic anoxia and the end Permian mass extinction. Science, vol: 272, p: 1155-1158.