Bangestan Reservoir Quality Analysis Based on Electrofacies and Fluid Units in Mansuri Oilfield, SW of Iran


1 Department of Geology, Faculty of earth Sciences, Shahid Chamran University, Ahvaz

2 Department of Geology, Shahid Chamran University, Ahvaz

3 Geological Research Section, NISOC, Ahvaz


    To understand the Bangestan reservoir characteristics of Mansuri oilfield, the methods of electrofacies and fluid units determination were used. All reservoir logs of 82 drilling wells were uploaded in Geolog software. At the first 9 clusters were determined using neural net and then decreased into 4 clusters using water saturation-capillary pressure plot due to their similarities. The results revealed that the electrofacies no 1and no 4 are the best and the worst reservoir quality, respectively. The provided model was extended for the whole oil field. Fluid units were determined in one of drilled well (due to limited data) using improved Lorenz plot and consequently, 4 units were recognized. Similarity, fluid units 1 and 4 are defined as the highest and lowest speed of fluid, respectively. The reservoir heterogeneity value was estimated 0.58 according to Lorenz method that indicated the Bangestan carbonate reservoir is heterogeneous. These results can be  important in detection of characteristics, behavior and management of hydrocarbon reservoir.


رحیمی بهار،ع.ا. ، و پرهام، س.، 1391، تجزیه و تحلیل رخساره‌های الکتریکی با استفاده از رخساره‌های رسوبی، نشریه رخساره رسوبی، بهار-تابستان 91، دوره 5، شماره 1، ص. 61-74.
رحیمی بهار،ع.ا. ، و حسین پور صیامی، ح.، 1391، تفکیک زون‌های مختلف مخزن هیدروکربنی با کمک رخساره‌های الکتریکی، پژوهش نفت، شماره 72، ص. 144-153.
زحمتکش، ا.، سلیمانی، ب.، غبیشاوی، ع.، و شیخ‌زاده، ح.، 1394، شناسایی و تفسیر رخساره‌های الکتریکی و استفاده از آن جهت پیش‌بینی رخساره‌های رسوبی، در مخزن آسماری یکی از میادین نفتی جنوب غرب ایران، مجله زمین‌شناسی کاربردی پیشرفته، تابستان 94، شماره 16، صفحه 72-81.
سلیمانی، ب.، غبیشاوی، ع.، توسلی کجایی، ا.ر.، 1392-الف، رخساره الکتریکی و انطباق آن‌ها با تراکم شکستگی‌ها در مخزن آسماری میدان نفتی لالی، مجله زمین‌شناسی کاربردی پیشرفته، زمستان 92،  شماره 10، صفحه 1-9.
سلیمانی، ب.، غبیشاوی، ع.، توسلی کجایی، ا.ر.، 1392-ب،  تعیین خصوصیات مخزنی با استفاده از تلفیق روش رخساره الکتریکی با داده‌های پتروفیزیکی و زمین‌شناسی یکی از میادین نفتی، اولین کنفرانس و نمایشگاه تخصصی نفت، 9 صفحه
کدخدایی ایلخچی، ر.، رضایی، ر.، موسوی حرمی، ر.، کدخدایی ایلخچی، ع.، 1393، بررسی رخساره­های الکتریکی مخزنی در قالب واحدهای جریانی هیدرولیکی در میدان ویچررنج مربوط به حوضه پرت واقع در استرالیای غربی. پژوهش‌های چینه نگاری و رسوب‌شناسی، جلد 30، شماره 1، صفحه 1-22.
Abbaszadeh, M., Fujii, H., Fujimoto, F., 1996. Permeability Prediction by Hydraulic Flow Units - Theory and Applications: SPE Formation Evaluation, V. 11, P. 263-271.
Ahmad,T., 2001. Reservoir Engineering Handbook, 2nd Edition, Gulf Professional Publishing: pp 1185.
Al-Ibrahim, M.A., Sarg, R., Hurley, N., Cantrell, D., and Humphrey, J.D., 2015, Depositional Environments and Sequence Stratigraphy of Carbonate Mudrocks Using edimentology, Multi-Scale Electrofacies Visualization, and Geochemical Analyses: Tuwaiq Mountain and Hanifa Formations, Saudi Arabia, AAPG Convention and Exhibition, Denver, Colorado, May 31-June 3, 2P.
Amaefule, J.O., Altunbay, M., Tiab, D., Kersey, D.G. and Keelan, D.K., 1993, Enhanced Reservoir Description; Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells: Formation Evaluation and Reservoir Geology. Proceedings of the Society of Petroleum Engineers Annual Conference, Houston, 3-6 October 1993, 205-220.
Archie, G. E., 1952, Classification of carbonate reservoir rocks and petrophysical considerations: AAPG Bulletin, V. 36, no 2, p. 278-298.
Bagheri, A.M., Biranvand, B., 2006. Characterization of Reservoir Rock Types in a Heterogeneous Clastic and Carbonate Reservoir. JSUT, V.32, no.2, p.29-38
Baldwin, J.L., Bateman, R.M., and Wheatley, C.L.,1990. Application of a neural network to the problem of mineral identification from well logs. The Log Analyst, 31 (5): 279-293.
Baldwin, J.L., Otte, D.N., and Bateman, R.M.,1989. Computer emulation of human mental processes:application of neural network simulators to problems in well log interpretation. SPE Annual Technical Conference and Exhibition Proceedings (SPE-19619), v. omega, Formation Evaluation and ReservoirGeology: Society of Petroleum Engineers, 481-493 p.
Busch, J.M.; Fortney, W.G., and Berry, L.N., 1987. Determination of lithology from well logs by statistical analysis. SPE Formation Evaluation, 2 (4): 412-418.
Chautru, J.M., Chautru, E., Garner, D., Srivastava, R.M., Yarus, J.M., 2016, Using Spatial Constraints in Clustering for Electrofacies Calculation, Geostats: ManuTrak # 03-0151621-01.
Chopra, A. K., M. H. Stein, and J. C. Ader, 1989, Development of Reservoir Descriptions To Aid in Design of EOR Projects: SPE Reservoir Engineering, V. 4, p. 143-150.
Correia, G.G., and Schiozer, D.J., 2016, Reservoir characterization using electrofacies analysis in the sandstone reservoir of the Norne Field (offshore Norway). Petroleum Geoscience, V. 19, doi:10.1144/petgeo2015-029.
Garner, D.L., Yarus, J., and Srivastava, M. 2015, Modeling Three Ways from Electro-facies - Categorical, E-facies Probabilities, and Petrophysics with Assignment. Petroleum Geostatistics 2015, Biarritz, 7-11 September.
Gunter, G. W., J. M. Finneran, D. J. Hartmann, and J. D. Miller, 1997, Early Determination of Reservoir Flow Units Using an Integrated Petrophysical Method, SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 1997 Copyright 1997, Society of Petroleum Engineers, Inc.
Jennings, J. B., 1987, Capillary pressure techniques: application to exploration and development geology, AAPG Bull., Vol. 71, no.10, p. 1196-1209.
Karimian Torghabeh, A., Rezaee, R., Moussavi-Harami, R., Pimentel, N., 2015, Using electrofacies cluster analysis to evaluate shale-gas potential: Carynginia Formation, Perth Basin, Western Australia, Int. J. Oil, Gas and Coal Technology, Vol. 10, No. 3, P.250-271.
Krott, D., Hilgers, C., and Bücker, C., 2015, Facies delineation by using a multivariate statistical model from onshore wells in the Nile Delta, Z. Dt. Ges. Geowiss. (German J. Geol.), 166 (4), p. 375–390.
Kudryashova, L., Belozerov, V., and Pushtakov, E., 2015, Identification of electrofacies on the basis of well logging to determine sedimentation environment of horizon JK in Em-Egovskoe field (Western Siberia), IOP Conf. Series: Earth and Environmental Science, V. 27, P. 1-6. 
Kumar, B., Kishore, M., 2006, Electrofacies Classification – A Critical Approach, 6th International Conference and Exposition on Petroleum Geophysics. New Delhi, India
Lorenz, M. O., 1905, Methods of measuring the concentration of wealth Publications of the American Statistical Association. V. 9 (New Series, No. 70), P. 209-219
Lucia, J. F., 2007. Carbonate Reservoir Characterization An Integrated Approach, Springer, 332 P.
Mwenifumbo, C.J. and Blangy, J.P., 1991. Short-term spectral analysis of downhole logging measurements from site 704, chapter 30, in Ciesielski, P.F., Kristoffersen, Y., et al., eds., Proceedings of the Ocean Drilling Program. scientific results, v. 114: Texas AandM University, Ocean Drilling Program, CollegeStation, Texas, 577-585 p.
Nelson, R.A., 2001, Geologic analysis of naturally fractured reservoirs, 2nd ed., Gulf Professional Publishing is an imprint of Butterworth–Heinemann, 350P.
Rabiller, P., 2005. Facies prediction and data modeling for reservoir characterization.  FACIMAGETM methodology, Illustrated user’s guide of Geolog software 6.6.1 to Geolog 6.7TM. Prepared by Rabiller Edited, Rabiller Geo-consulting.
Rebelle, M., Umbhauer, F., and Poli, E., 2009. Pore to Grid Carbonate Rock-Typing, International Petroleum Technology Conference, Doha, Qatar, 2009, International Petroleum Technology Conference.
Rezaeeparto, K., Rahimpour Bonab, H., Kadkhodaie, A., Arian, M., Hajikazemi, E., 2016, Investigation of Microfacies—Electrofacies and Determination of Rock Types on the Aptian Dariyan Formation NW Persian Gulf, Open Journal of Geology,  V. 6, P. 58-78
Rogers, S.J., Fang, J.H.; Karr, C.L., and Stanley, D.A., 1992. Determination of lithology from well logs using a neural network. AAPG Bulletin, 76 (5): 731-739.
Schlumberger, 1989, Log interpretation Principles/Applications, Schlumberger Educational Services, Inc., Houston. 239P.
Schmalz, J.P., and Rahme, H. D., 1950, The Variation of waterflld performance with Variation in Permeability Profile, Prod. Monthly; V.15, no. 9, p. 9-12.
Serra, O. and Sulpice, L., 1975. Sedimentological analysis of shale-sand series from well logs. Transactions of the SPWLA 16th Annual Logging Symposium.
Serra, O., and H. Abbot, 1980, The Contribution of Logging Data to Sedimentology and Stratigraphy, SPE of AIME, Transaction 55th Annual Fall Technology Conference and Exhibition, Dallas, Texas, 19p.
Sherkati, S., and Letouzey, J., 2004, Variation of structural style and basin evolutionin in the central Zagros Izeh zone and Dezful Embayment. Iran, Marine and Petroleum Geology, v. 21, p. 535–554.
Tiab, D., Donaldson, E. C., 2004. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, 2nd Edition, Elsevier. Gulf Professional Publishing: 915 P.
Vesanto, J., 1999, SOM-based visualization methods. Intelligent Data Analysis, V.3, P.111-126
Wolff, M., and Pelissier-Combescure, 1982. Automatic electrofacies determination. 23rd Annual Logging Symposium Transactions, Society of Professional Well Log Analysts, 22 p.
Ye, S.J., and Rabiller, Ph., 2000. A new tool for electrofacies analysis: multi resolution graph based clustering. SPWLA, 41 Annual Logging Symposium, June 4-7.
Zawila, J., Fluckiger, S., Hughes, G., Kerr, P., Hennes, A., Hofmann, M., Wang, H., and Titchmarsh, H., 2015, An integrated, multi-disciplinary approach utilizing stratigraphy, petrophysics, and geophysics to predict reservoir properties of tight unconventional sandstones in the Powder River Basin,Wyoming, USA, SEG New Orleans Annual Meeting , P. 2677-2681