Geological, Mineralogical, Geochemical and Fluid Inclusion Studies of Dizelo Lead and Zinc Deposit, Isfahan

Authors

Department of Geology, Faculty of Sciences, Lorestan University, Khoram Abad, Iran

Abstract

The Dizelo lead-zinc deposit is located at the central part of the Sanandaj-Sirjan metamorphic belt, 57 Km Northwest of Esfahan. The main lithological unites exposed in the study area are composed of Jurassic shale and Sandstone, Cretaceous limestone, shale, marl and sandstone. The ore mineralogy is simple; Sphalerite and barite are the main primary minerals. Galena, pyrite and chalcopyrite occur as minor and trace mineral inclusions in sphalerite. Hemimorphite and smithsonite are the main secondary minerals. The most important ore mineral textures include: open space filling, stringer, colloform, crustification, beaded and comb textures. It seems that basinal brines as the main source of the ore-bearing fluids were upwelled along the fault and fractures’ leaching Zn, Pb and trace elements from the shale unites.  Physic-chemical changes caused by the interaction of ore-forming fluid and the carbonate host rocks have provided the effective mechanisms for Pb-Zn ore deposition through cooling, increasing pH, decreasing pressure and H2O dielectric constant and ligands disintegration. Primary fluid inclusion homogenization temperature ranges from 55 to 164 °C, the salinity ranges between 17-25.98 wt. % NaCl equiv, the dolomitization and silicification alterations of carbonate host rocks, the open space filling and replacement textures, the stratabound and epigenetic mineralization, the absence of igneous activity, the ore occurs as replacement of carbonate host rock, the mineralogy and geochemistry evidences all together suggest a Mississippi Valley Type model for mineralization at Dizelo Zn-Pb deposit. Understanding the ore deposition mechanisms of the Dizelo Pb-Zn Mississippian Valley type deposit, which is located in the Northeast of Esfahan, gives a valuable insight for further exploration of the similar ore occrences in the central part of the Sanandaj-Sirjan.
 

Keywords


جزی. م.ع.، شهاب پور. ج.، 1389، بررسی خصوصیات کانی‌شناسی، ساختی، بافتی و ژئوشیمیایی معدن سرب نخلک، اصفهان. مجله زمین‌شناسی اقتصادی، شماره 2، ص 131-151.
شرکت کهن آرا صنعت.، 1387، گزارش پایانی عملیات اکتشافی  کانسار سرب روی دیزلو.
صفری. ا.، 1374، میکروفاسیس سنگ‌های کرتاسه زیرین در شمال شرق اصفهان، پایان‌نامه کارشناسی ارشد، دانشکده علوم، بخش زمین‌شناسی، دانشگاه اصفهان، ایران.
قربانی. م.، 1381، دیباچه‌ای بر زمین‌شناسی اقتصادی ایران، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور، 695ص.
مر. ف.، اسدی. س.، فتاحی. ن.، 1390، زمین‌شیمی و زمین دما سنجی کانسار مس جیان (بوانات)، زون سنندج-سیرجان، شمال شرق استان فارس، مجله زمین‌شناسی کاربردی پیشرفته، شماره 1، ص 80-92.
ملکزاده شفا رودی. آ.، کریم پور. م.ح.، 1392، زمین‌شناسی، کانی سازی و مطالعات میانبارهای سیال کانسار سرب-روی-مس حوض رئیس، شرق ایران. مجله زمین‌شناسی کاربردی پیشرفته، شماره 6، ص 63-73.
ملک قاسمی. ف.، 1378، اصول مینرالوگرافی، انتشارات دانشگاه تبریز،173 ص.
Ahya. F., Lotfi. M., Rasa. I., 2010, Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study, Journal of Asian Earth Sciences, Vol: 37, p:186–194.
Alavi. M., 1994, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations, Tectonophysics, Vol: 229, p: 211–238.
Appold. M.S., Wenz. Z.J., 2011, Composition of Ore Fluid Inclusions from the Viburnum Trend, Southeast Missouri District, United States: Implications for Transport and Precipitation Mechanisms, Economic Geology, Vol: 106, p: 55–78.
Bakker. R.J., 1997, Clathrates: computer programs to calculate fluid inclusion V–X properties using clathrate melting temperatures, Computer Geoscience, Vol: 23, p: 1–18.
Bakker. R.J., 1999, Optimal interpretation of microthermometrical data from fluid inclusions: thermodynamic modeling and computer programming, Habilitation thesis. Ruprecht-Karls-University, Heidelberg, 50 p.
Berberian. M., King. G.C.P., 1981- Towards a paleogeography and tectonic evolution of Iran, Canadian Journal of Earth Sciences, Vol: 18, p: 210–26.
Bodnar. R.J., 1983, A method of calculating fluid inclusion volumes based on vapor bubblediameters and P-V-T-X properties on inclusion fluid, Economic Geology, Vol: 78, p: 535-542.
Boni. M., Large. D., 2003, Nonsulfide zinc miner­alization in European overview, Economic Geology, Vol: 98, p: 715–729.
Brown. P.E., 1989, FLINCOR: A microcomputer program for the reduction and investigation of fluid-inclusion data, American Mineralogist, Vol: 74, p: 1390–1393.
Crawford. M.L., 1981, Phase equilibria in aqueous fluid inclusions. In: Hollister, L.S., Crawford, M.L. (Eds.), Fluid Inclusions: Applications to Petrology, Mineralogical Association of Canada, Short Course Handbook, Vol: 6, p: 75–100.
Diamond. L.W., 2003, Systematics of H2O inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid Inclusions: Analysis and Interpretation, Mineralogical Association of Canada Short Course Series, Vol: 32, p: 55-79.
Ehya. F., Lotfi. M., Rasa. I., 2010, Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study, Journal of Asian Earth Sciences, Vol: 37, p: 186–194.
Fernandez. P.F.J., Izard. M.A., 2005, Trace element content in galena and sphalerite from ore deposits of the Alcudia Valley mineral field (Eastern Sierra Morena, Spain), Journal of Geochemical Exploration, Vol: 86, p: 1-25.
Foley. N.K., 2002, Environmental geochemistry of platform carbonate-hosted sulfide deposits, in Seal, R.R., and Foley, N.K., eds., Progress on geoenvironmental models for selected mineral deposit types. U.S. Geological Survey Open-File Report, 02–195, p: 87–100.
Ghazban. F., Mcnutt. R.H., Schwarcz. H.P, 1994, Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, West-Central Iran, Economic Geology, Vol: 89, p: 1262-1278.
Guilbert. J.M., Park. C.F., 1997, The Geology of ore Deposits, Freaman and company, New York, 985p.
Haynes. D.W., Cross. K.C., Bils. R.T., Reed. M.H., 1995- Olympic Dam ore genesis, A fluid mixing model, Economic Geology, V 90, p: 281-307.
Kesler. S.E., 2005, Ore-forming fluids, Elements, Vol: 1, p: 13-18.
Kesler. S.E., Reich. M.H., 2006, Precambrian Mississippi Valley-Type deposits; relation to changes in composition of the hydrosphere and atmosphere, in Kesler, S.E., and Ohmoto, Hiroshi, eds., Evolution of early Earth’s atmo­sphere, hydrosphere, and biosphere; constraints from ore deposits, Geological Society of America Memoir, Vol: 198, p: 185–204.
Large. R., Huston. D., McGoldrich. P., McArthur. G., Ruxton. P., 1988, Gold distribution and genesis in Paleozoic volcanogenic massive sulphide systems. In: Bicentennial Gold 88, Geological Society of Australia, Vol:22, p: 121–126.
Leach. D.L., Sangster. D.F., 1993, Mississippi Valley-Type lead-zinc deposits, Geological Association of Canada Special Paper, Vol: 40, p: 289–314.
Leach. D.L., Viets. J.B., Foley-Ayuso. N.K., Klein. D.P., 1995, Mississippi Valley-Type Pb-Zn deposits (Models 32a, b; Briskey, 1986 a, b), in Du Bray, E. A., ed., Preliminary Compilation of Descriptive Geoenvironmental Mineral Deposit Models: U.S. Government Consulting Group, Open-File Report 95–831, p: 234–243.
Leach. D.L., Bradley. D.C., Lewchuk. M.T., Symons. D.T.A., Marsily. G., Brannon. J.C., 2001, Mississippi Valley-Type lead-zinc deposits through geological time: implications from recent age-dating research, Mineralium Deposita, Vol: 36, p: 711–740.
Leach. D.L., Sangster. D.F., Kelley. K.D., Large. R.R., Garven. G., Allen. C.R., Gutzmer. J., Walters. S., 2005b, Sediment-hosted lead-zinc deposits: a global perspective. Society of Economic Geologists, Economic Geology One Hundredth Anniversary Volume, 1905–2005, p: 561–607.
Leach. D.L., Bradley. D.C., Huston. D., Pisarevsky. S.A., Taylor. R.D., Gardoll. S.J., 2010, Sediment-hosted lead-zinc deposits in Earth history, Economic Geology, Vol: 105, p: 593–625.
Leach. D.L., Taylor. R.D., Fey. D.L., Diehl. S.F., Saltus. R.W., 2010, A deposit model for Mississippi Valley-Type lead-zinc ores, chap. A of Mineral deposit models for resource assessment. U.S. Geological Survey Scientific Investi­gations Report 2010–5070–A, 52 p.
McKendrick. M.A., Burgess. R., Leach. D., Pattrick. R.A.D., 2002, Hydrothermal fluid origins in Mississippi Valley-type ore districts: Combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the Illinois-Kentucky fluorspar district, Viburnum Trend, and Tri- State districts, midcontinent United States, Economic Geology, Vol : 97, p: 453−469.
Mohajjel. M., Fergusson. C.L., Sahandi. M.R., 2003, Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran, journal asian earth sciences, Vol: 21, p: 397–412.
Momenzadeh. M., Shafighi. S., Rastad. E., Amustutez. G.C., 1979, The Ahangaran Lead-Silver deposit, SE Malayer, west central Iran, Mineral deposita, Vol: 14, p: 323-341.
Moses. C.O., Nordstrom. D.K., Herman. J.S., Mills. A.L., 1987, Aqueous pyrite oxidation by dissolved oxygen and ferric iron, Geochimica et Cosmochimica Acta, Vol: 51, p: 1561–1571.
Paradis. S., Hannigan. P., Dewing. K., 2007, Mississippi Valley-Type lead-zinc deposits, in Goodfellow, W.D., ed., Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication no, Vol: 5, p: 185–203.
Ramdohr. D.R.P., 1966, The ore minerals and their intergrowths, pergamon press, 1174 p.
Sangster. D.F., 1995, Mississippi Valley-Type lead-zinc, in Eckstrand, O.R.,Sinclair, W.D., and Thorpe,R.I., eds., Geology of Canadian MineralDeposit Types, Geological Survey of Canada, Geology of Canada, Vol: 8, p: 253-261.
Seward. T. M., 1973, Thio complexes of gold and the transport of gold in hydrothermal solutions, Geochim, cosmochim, Acta, Vol: 37, p: 379-399.
Seward. T. M., 1991, The hydrothermal geochemistry of gold, in: Foster, R. P. (ed), gold metallogeny and exploration, Blakie and sons Ltd. 432 p.  
Shepherd. T. J., Rankin. A. H., Alderton. D. H. M., 1985, A Practical Guide to Fluid Inclusion Studies, Blackie, Glasgow, 239 p.
Smirnow. V.I., 1976, Geology of mineral deposits, Moscow, MIP pub, 250 p.
Stumm. W., Morgan. J.J., 1996, Aquatic chemistry: Chemical equilibria and rates in natural waters, 3rd edition, John Wiley and Sons, NY, 1022 p.
Touret. J., Dietvorst. P., 1983, Fluid inclusions in high-grade anatectic metamorphites, Journal of Geolgical Society of London, Vol: 140, p: 635-649.
Ulrich. T., Gunther. D., Heinrich. C. A., 2001, Evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina, Economic Geology, Vol: 96, p: 1743, correctly reprinted in 2002. 97, 1888-1920
Viets. J.G., Leach. D.L., 1990, Genetic implications of regional and temporal trends in ore fluid geochemistry of Mississippi Valley-type deposits in the Ozark region, Economic Geology, Vol: 85, p: 842–861.
Viets. J.G., Hofstra. A.H., Emsbo. P., Kozlowski. A., 1996, The composition of fluid inclusions in ore and gangue minerals from Mississippi Valley-Type Zn-Pb deposits of the Cracow-Silesia region of southern Poland: genetic and environmental implications, in Gorecka, E., and Leach, D.L., eds., Carbonate-hosted zinc-lead deposits in the Silesian-Cracow area, Poland: Warsaw, Poland, Prace Panstwowego Instytuti Geologicznego, Vol: 154, p: 85–104.
Wlkinson. J.J., 2001, Fluid inclusions in hydrothermal ore deposits, Lithos, Vol: 55, p: 229-272.
Zhang. Y.G., Frantz. J.D., 1987, Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCl–CaCl2–H2O using synthetic fluid inclusions,Chemical Geology, Vol: 64, p: 335–350.