Mineralogy, Alterations, Lithogeochemical Investigations and Fluid Inclusions Studies in Kudkan Cu-Au Mineralization Area, Southern Khorasan, Iran


1 Geological Survey of Iran

2 Department of Geology, Tehran University


      The epithermal Au-Cu system of kudkan , west of Qaeh zari and  Kudakan village anomaly  is located in north part of Lut Block in Central Iran (Southern Khorasan). Mineralization features in study area, are mostly include veins that follow structural features with NW-SE trend and is hosted in  acidic- intermediate volcanic host rocks (andesite, trachy andesite, rhyolite) with Eocene age. Alteration zones include: moderate-advanced argillic, silicification, quartz- sericite- pyrite, quartz- iron oxide- carbonate and propylitic. Veins mineralization include: Quartz, sericite, pyrite and clay minerals. Based on fluid inclusions in quartz in west of Qaleh zari (anomaly zone 1), mineralization occurred in 109-429 C (mainly 100-300 C) and salinity between 0.2–9.7 wt.% NaCl equiv. Studies in this area  indicates low-moderate sulfidation mineralization in west of Qaleh zari. Also minerlogical and alteration evidences can indicate mineralization related intrusive bodies in anomaly zone 2. This resalts can help to new minerali zation zone in this area.


اشراقی. ح.، راستاد، ا.، امامی، م. ه. و عسکری، ع.، 1387، کانه زایی طلای هیرد: نمونه­ای از ذخایر طلای مرتبط با نفوذی­های گرانیتوییدی کاهیده در ایران )جنوب بیرجند(، فصلنامه علوم زمین، شماره69 ، ص 19-2.
آقانباتی. ع.، 1383، زمین­شناسی ایران، سازمان زمین­شناسی و اکتشافات معدنی کشور، 586 ص.
امرایی. س.،1391، زمین­شیمی، سنگ­شناسی، کانی ­شناسی، مطالعه میانبارهای سیال و آلتراسیون­ها در محدوده اکتشافی برگه 1:50000 کودکان )خراسان جنوبی) جهت اکتشاف طلا و مس، پژوهشکده علوم زمین، سازمان زمین­شناسی و اکتشافات معدنی کشور.
بلوریان. غ.، 1389، شرح نقشه زمین­شناسی 1:100000  کودکان ، سازمان­زمین­شناسی و اکتشافات معدنی کشور.
حسنی­پاک. ع.ا.، 1387، اصول اکتشافات  زمین­شیمیایی، انتشارات دانشگاه تهران.
دیمه­ور. م., 1374. بررسی زمین­شناسی، کانی شناسی، ژئوشیمی و ژنز کانسار مس قلعه­زری بیرجند، دانشگاه تربیت مدرس
کریم­پور،م.، 1385 مطالعات زمین­شناسی، ژئوشیمی، پترولوژی و ژئوفیزیک در منطقه کانی­سازی طلا- قلع هیرد خراسان جنوبی.
توکل. ر.، مهرنیا.ر.، نظافتی.ن.، شیخ ذکریایی.ج.، 1392، توزیع ژئوفرکتالی سیلیس و ارتباط آن باکانه­زایی طلا در محدوده نیکویه (منطقه طارم، استان قزوین)، مجله زمین­شناسی کاربردی پیشرفته، دوره ، شماره8.
لطیفی ساعی. ف.، میرنژاد.ح.، علی­پور اصل.م.، نیرومند.ش.، 1393، بررسی کانی سازی طلا در سامانه رگه ای دره زار در منطقه پاریز )استان کرمان( باتاکید بر مطالعات میانبارهای سیال و ایزوتوپ های گوگرد، مجله زمین شناسی کاربردی پیشرفته، دوره 1، شماره 14، صفحه 1-82.
عزمی. ح.، 1379، گزارش برگه 1:100000 کودکان، سازمان زمین­شناسی و اکتشافات معدنی کشور.
Albinson. T., Norman. D. I., and Chomiak. B., 2001, Controls on formation of low-sulfidation epithermal deposits in Mexico: Constrain from fluid inclusion and stable isotope data: Society of Economic geologist, Special Publication 8, p: 1-32.
Benning. L.G., Seward. T.M., 1996,  Hydrosulfide complexing of Au (I) in hydrothermal solutions from 150 to 400oC and 500 to 1500 bars: Geochimica et Cosmochimica Acta, vol: 60, p: 1849–1871.
Dong, G., Morrison, G.W. and Jaireth, S., 1995- Quartz textures in epithermal veins, Queensland-Classification, origin, and implication: Economic Geology, vol: 90, p: 1841–1856.
De Ronde. C.E.J., Blattner, P., 1988,  Hydrothermal alteration, stable isotopes, and fluid inclusions of the Golden Cross epithermal goldsilver deposit, Waihi, New Zealand: Economic Geology, vol: 83, p: 895-917.
Guilbert, J.M. and Park, Jr.C.F., 1986, The geology of Ore deposits, w.h. Freeman, pp 799-830, ISBN 0-7167-1456-6.
Irvin. T.N. Baragar , W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks, Can .J.Earth Sci: p.523-548.
 Henley. R.W., 1985, The geothermal framework of epithermal deposits:Reviews in Economic Geology, vol: 2, p: 1-24.
Henley. R.W. , Ellis. A.J., 1983,  Geothermal systems ancient and modern: A geochemical review: Earth Science Reviews, vol: 19, p:1-50
Hedenquist. J.W., 1987, Mineralization associated with volcanic-related hydrothermal systems in the circum-Pacific Basin: Circum-Pacific Energy and Mineral Resources Conference, Singapore, Transactions, p: 513-524.
Hedenquist. J.W., Arribas. A., Gonzalez-Urien. E., 2000, Exploration for epithermal gold deposits: Reviews in Economic Geology, vol: 13, p: 245-277.
Hedenquist. J.W., Arribas. A., 1998, Evolution of an intrusion-centered hydrothermal system: far southeast Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Econ. Geology, vol: 93, p:  373–404.
Lattanzi. P., 1991,  Applications of fluid inclusions in the study and exploration of mineral deposits. Eur. J. Mineral. 3, p: 689–697.
Naden. J., Killias. S.P., Darbyshire.D.P.F., 2005, Active geothermal system with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: the example of Milos Island, Greece. Geology , vol:33, p: 541–544.
Pearce, J.A., Lippart, S., Roberts, S., 1984. Characteristic and tectonic setting of Supra-subduction zone ophiolites. Geol. Soc. Spec. Publ. London., 16: 77-96.
Pearce, J.A., Harrison, N.B.W. and Tindle, A.G., 1984, Trace element discrimination diagram for the tectonic interpretation of granitic rocks. Journal of petrology25, 956-983.
 Peccerillo, A., A and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and petrology 58, 63-81.
Simmons. S. F., Simpson. M. P., Mauk, J., 2000, The mineral products of boiling in the Golden Cross epithermal deposit: New Zealand Minerals and Mining Conference Proceedings, p: 209-216.
Simpson. M. P., Mauk. J., Simmons. S. F., 2001, Hydrothermal alteration and paleohydrology of the Golden Cross epithermal deposit, Waihi, New Zealand: Economic Geology, vol: 96, p: 773-796.
Simmons. S.F., Gemmell. B., Sawkins, F.J., 1988, The Santo Nino silverlead zinc vein, Fresnillo district, Zacatecas, Mexico: Part II. Physical and chemical nature of ore-forming solutions: Economic Geology, vol: 83, p: 1619–1641.
Simmons. S.F., Christensen. B. W., 1994- Origins of calcite in a boiling geothermal system: American Journal of Science, vol:294, p:361-400.
-Shepherd. T.J., Ranbin. A.H., Alderton. D.H.M., 1985, A Practical Guide to Fluid Inclusion Studies. Blackie, Glasgow, p: 223.
Seward. T.M. and Barnes. H.L., 1997, Metal transport by hydrothermal ore fluids, in Barnes. H.L., ed., Geochemistry of hydrothermal ore deposits, 3rd ed.: New York, John Wiley and Sons, p: 435–486.
Shand, S.J., 1951.The study of rocks. Londan,Thomas,Murby and CO., 236P.
Taylor. B.E., 2007, Epithermal gold deposits, In Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Edited by W.D. Goodfellow. Geological Association of Canada, Mineral Deposits Division, Special Publication 5, p: 113–139.
Thompson.M.,  Howarth.R.J., 1978, A new approach to the estimation of analytical precision: Journal of Geochemical exploration, vol:9, p: 23-30.
Wilkinson. J.J., 2001, Fluid inclusions in hydrothermal ore deposits: Litos, vol:55, p:229-272.
Walter. L.M., Stueber. A.M., Huston. T.J., 1990, Br-Cl-Na, systematics in Illinois Basin fluids: Constraints on fluid origin and Geology , vol: 18 , p:315–318.evolution.
Williams-Jones. A.E.,  Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits: 100th Anniversary Special Paper, Economic Geology, vol: 100, p: 1287–1312.
Wood, D.A., Joron, J.L., Treuil, M., 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet. Sci. Lett., 45: 326-336.
Wood, D.A.,Joron,J.L., Treuil, M.,Norry,M., 1979. Tarney,J.,Element and Sr isotope variation in basic lavas from Iceland and the surrounding ocean floor.Contrib.Mineral.petrol.70,319-339.