کانی‌سازی و مطالعات سیالات درگیر کانسار اکسید آهن- آپاتیت خانلق، شمال شرقی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار دانشگاه فردوسی مشهد

2 استاد دانشگاه فردوسی مشهد

چکیده

       کانسار اکسید آهن- آپاتیت خانلق در شمال غربی نیشابور و در شرق کمربند ماگمایی قوچان- سبزوار واقع شده است. سنگ میزبان آن کوارتزمونزودیوریت و گرانودیوریت الیگوسن است. کانی سازی عمدتا به شکل رگه و رگچه و کم برشی است. کانیشناسی شامل مگنتیت و آپاتیت است که همراه با کلسیت ، کوارتز ، اپیدوت ، پیروکسن و کلریت می باشد. مطالعات برمبنای سیالات درگیر در آپاتیت ، دو نوع سیال مختلف در شکل گیری کانسار نقش دارند: 1) سیال با دمای بالا و شوری بالا که ماهیت ماگمایی دارد و 2) سیال عمدتا با دمای متوسط ​​محتوی نمادهای CaCl 2 ، MgCl 2 و NaClو شوری نسبتا پایین. فرآیند اختیاری بین محلول ماگمایی کانهدار گرم و شور و محلول سردتر و کم شور و همچنین فرایند جوشش باعث می شود تهنشینی تحت تأثیر قرار بگیرد. این کانسار منشاء ماگمایی- هیدروترمالی دارد و با فعالیتهای ماگماتیکی ترشیاری مرتبط با زون فرورانش ورقه اقیانوسی نئوتتیس سبزوار به زیر صفحه توران است. شناخت کانسار مگنتیت- آپاتیت خانلق ، به عنوان اولین کانیوریشن کشف شده نوع کایرونا در شمال شرق ایران ، گام مثبتی جهت اکتشاف این نوع کانسارها در این بخش از کشور است.
 

کلیدواژه‌ها


زارعی. الف.، ملک زاده شفارودی. الف.، کریم­پور. م.ح.، 1395، کانسار مگنتیت- آپاتیت خانلق، شمال غربی نیشابور: کانی­شناسی، ساخت و بافت، آلتراسیون و تعیین مدل، مجله بلورشناسی و کانی­شناسی ایران، در حال چاپ.
قائمی. ف.، قائمی. ف.، حسینی. ک.، 1378، نقشه زمین­شناسی 1:100000 نیشابور، سازمان زمین­شناسی و اکتشافات معدنی کشور.
لطیفی ساعی. ف.، میرنژاد. ح.، علی پور اصل. م.، نیرومند. ش.، 1393، بررسی کانه­زایی طلا در سامانه رگه­ای دره­زار در منطقه پاریز (استان کرمان) با تاکید بر مطالعات میانبارهای سیال و ایزوتوپ­های گوگرد، مجله زمین­شناسی کاربردی پیشرفته، شماره 14، ص 65-75.
ملکزاده شفارودی. م.، کریم­پور. م.ح.، 1391، زمین­شناسی، کانی­سازی و مطالعات سیالات درگیر کانسار سرب- روی- مس حوض رئیس، شرق ایران، مجله زمین­شناسی کاربردی پیشرفته، شماره 6، ص 63-73.
Alavi. M., 1991, Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran, Geological Society of American Bullitan, Vol: 103, p: 983–992.
Azizi. H., Mehrabi. B., Akbarpour. A., 2009, Genesis of Tertiary magnetite–apatite deposits, southeast of Zanjan, Iran, Resource Geology, Vol: 59, No:4, p: 330–341.
Barton. M.D., Johnson. D.A., 1996, Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization, Geology, Vol: 24, p: 259–262.
Bauman. A., Spies. O., Lensch. G., 1983, Strontium isotopic composition of post-ophiolithic tertiary volcanics between Kashmar, Sabzevar and Quchan NE Iran, In: Almassi. A., (eds.), Geodynamic project (geotraverse) in Iran. Geological Survey of Iran, Tehran, p: 267-276.
Bonyadi. Z., Davidson. G.J., Mehrabi. B., Meffre. S., Ghazban. F., 2011, Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide– apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry, Chemical Geology, Vol: 281, p: 253–269.
Broman. C., Nystrom. J., Henriquez. F., Elfman. M., 1999, Fluid inclusion in magnetite-apatite ore from a cooling magmatic system at El Laco, Chile, Garuda Frequent Flyer, Vol: 121, p: 253–267.
Daliran. F., 2002, Kiruna-type iron oxide–apatite ores and apatites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites. In: Porter. T.M. (eds.), Hydrothermal iron oxide copper-gold and related deposits. Adelaide, PGC Publishing, p: 303–320.
Daliran. F., Stosch. H.G., Williams. P., 2007, Multistage metasomatism and mineralization at hydrothermal Fe oxide-REE apatite deposits and “apatites” of the Bafq district, central east Iran. In: Stanely. C.J. et al. (eds.), Digging Deeper, Proceeding of 9th Biennial SGA Meeting Dublin, p: 1501–1504.
Daliran. F., Stosch. H.G. Williams. P., 2010, Lower Cambrian iron oxide–apatite-REE (U) deposits of the Bafq district, east- Central Iran. In: Corriveau. L. Mumin. H. (eds.), Exploring for iron-oxide copper-gold deposits: Canada and global analogues. Québec: Geological Association of Canada and Geological Survey of Canada, p: 143–155.
Davidson. G.J., Paterson. H., Meffre. S., Berry. R.F., 2007, Characteristics and origin of the Oak Dam East breccia-hosted, iron oxide-Cu-U-(Au) deposit: Olympic Dam region, Gawler Craton, South Australia, Economic Geology, Vol: 102, p: 1471–1498.
Edfelt. A., 2007, The Tjårrojåkka apatite-iron and Cu(-Au) deposits, northern Sweden: Products of one ore forming event, Luleå, Luleå University of Technology. Unpublished Ph. D thesis.
Forster. H., Jafarzadeh. A., 1994, The Bafq mining district in Central Iran: a highly mineralized Infracambrian volcanic field, Economic Geology, Vol: 89, p: 1667–1721.
Frietsch. R., Perdahl. J.A., 1995, Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types, Ore Geology Reviews, Vol: 9, p: 489–510.
Fu. B., Williams. P.J., Oliver. N.H.S., Dong. G., Pollard. P.J., Mark. G., 2003, Fluid mixing versus unmixing as an ore-forming process in the Cloncurry Fe-oxide-Cu-Au district, NW Queensland, Australia: Evidence from fluid inclusions, Journal of Geochemical Exploration, Vol: 78, p: 617–622.
Gelcich. S., Davis. D.W., Spooner. E.T.C., 2005, Testing the apatite–magnetite geochronometer: U–Pb and 40Ar/39Ar geochronology of plutonic rocks, massive magnetite–apatite tabular bodies, and IOCG mineralization in northern Chile, Geochimica et Cosmochimica Acta, Vol: 69, p: 3367–3384.
Gleason. J.D., Marikos. M.A., Barton. M.D., Johnson. D.A., 2000, Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe–P– REE) systems, Geochimica et Cosmochimica Acta, Vol: 64, p: 1059–1068.
Harlov. D.E., Andersson. U.B., Förster. H.J., Nyström. J.O., Dulski. P., Broman. C., 2002, Apatite monazite relation in the Kiirunavaara magnetite-apatite ore, northern Sweden, Chemical Geology, Vol: 191, p: 47–72.
Hildebrand. R.S., 1986, Kiruna-type deposits: Their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada, Economic Geology, Vol: 81, p: 640–659.
Hitzman. M.W., 2000, Iron oxide-Cu-Au deposits: what, where, when and why. In: Porter. T.M., (eds.), Hydrothermal iron oxide copper-gold and related deposits. A Global Perspective, Adelaide: Australian Mineral Foundation, p: 9–25.
Hitzman. M.W., Oreskes. N., Einaudi. M.T., 1992, Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-LREE) deposits, Precambrian Research, Vol: 58, p: 241–287.
Hou. T., Zhang. Z., Kusky. T., 2011, Gushan magnetite– apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type?, Ore Geology Reviews, Vol: 43, p: 333–346.
Jami. M., Dunlop. A.C., Cohen. D.R., 2007, Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran, Economic Geology, Vol: 102, p: 1111–1128.
Lecumberri-Sanchez. P., Steel-MacInnis. M., Bodnar. R.J., 2012, A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance, Geochim Cosmochim Acta, Vol: 92, p: 14-22.
Marschik. R., Fontboté. L., 2001, The Candelaria-Punta del Cobre iron oxide Cu-Au (-Zn-Ag) deposit, Chile, Economic Geology, Vol: 96, p: 1799–1826.
Martinsson. O., 2004, Geology and Metallogeny of the Northern Norrbotten Fe-Cu-Au Province, In:Allen. R.L., Martinsson. O., Weihed. P., (eds.), Svecofennian ore-forming environments, Volume 33: Volcanic-associated Zn-Cu-Au-Ag, intrusion-associated Cu-Au, sediment-hosted Pb-Zn, and magnetite-apatite deposits of Northern Sweden, Society of Economic Geologists, Guidebook Series, p: 131–148.
Mokhtari. M.A.A., Hosseinzadeh. G., Emami. M.H., 2013, Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry, Journal of Earth System and Sciences, Vol: 122, No: 3, p: 795–807.
Monteiro. L.V.S., Xavier. R.P., de Carvalho. E.R., Hitzman. M.W., Johnson. C.A., de Souza Filho. C.R., Torresi. I., 2008, Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajas Mineral Province, Brazil: paragenesis and stable isotope constraints, Mineralium Deposita, Vol: 43, p: 129–159.
Nabatian. G., Ghaderi. M., 2013, Oxygen isotope and fluid inclusion study of the Sorkhe-Dizaj iron oxide-apatite deposit, NW Iran, International Geology Reviews, Vol:  55, No: 4, p: 397–410.
Nabatian. G., Ghaderi. M., Daliran. F., Rashidnejad-Omran. N., 2012, Sorkhe-Dizaj Iron Oxide–Apatite Ore Deposit in the Cenozoic Alborz-Azarbaijan Magmatic Belt, NW Iran, Resource Geology, Vol: 63, No: 1, p: 42–56.
Naslund. H.R., Aguirre. R., Dobbs. F.M., Henriquez. F.J., Nyström. J.O., 2000, The origin, emplacement, and eruption of ore magmas. IX Congreso Geologico Chileno, Sociedad geológica de Chile, Vol: 2, p: 135–139.
Naslund. H.R., Henriquez. F., Nyström. J.O., Vivallo. W., Dobbs. F.M., 2002, Magmatic iron ores and associated mineralization: Examples from the Chilean high Andes and coastal cordillera, In:Porter. T.M., (eds.), Hydrothermal iron oxide copper-gold and related deposits: A global perspective, Volume 2: Adelaide, PGC Publishing, p: 207–226.
Nystrom. J.O., Billstrom. K., Henriquez. F., Fallick. A.E., Naslund. H.R., 2008, Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden, Garuda Frequent Flyer, Vol: 130, p: 177–188.
Nyström. J.O., Henriquez. F., 1994, Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry, Economic Geology, Vol: 89, p: 820–839.
Oreskes. N., Einaudi. M.T., 1990, Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia, Economic Geology, Vol: 85, p: 1–28.
Parak. T., 1984, On the magmatic origin of iron ores of the Kiruna type: Discussion, Economic Geology, Vol: 79, p: 1945–1949.
Pollard. P.J., 2001, Sodic(-calcic) alteration associated with Feoxide- Cu-Au deposits: An origin via unmixing of magmaticderived H2O-CO2-salt fluids, Mineralium Deposita, Vol: 36, p: 93–1 00.
Pollard. P.J., 2006, An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces, Mineralium Deposita, Vol: 41, p: 179–187.
Rieger. A.A., Marschik. R., Díaz. M., 2012, The evolution of the hydrothermal IOCG system in the Mantoverde district, northern Chile: New evidence from microthermometry and stable isotope geochemistry, Mineralium Deposita, Vol: 47, p: 359–369.
Rhodes. A.L., Oreskes. N., 1999, Oxygen isotope composition of magnetite deposits at EI Laco, Chile: Evidence of formation from isotopically heavy fluids, In:Skinner. B.J., (eds.), Geology and ore deposits of the central Andes, Volume 7: Society of Economic Geologists Special Publication, p: 333–351.
Rhodes. A.L., Oreskes. N., Sheets. S., 1999, Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile, In:Skinner. B.J., (eds.), Geology and ore deposits of the Central Andes, Volume 7: Society of Economic Geologists Special Publication, p: 299–332.
Roedder. E., 1984, Fluid inclusions, Reviews in Mineralogy, Vol: 12, 644 p.
Sheppherd. T.J., Rankin. A.H., Alderton. D.H.M., 1985, A Practical Guide to Fluid Inclusion Studies, Blackie and Son, 239 pp.
Skirrow. R.G., Bastrakov. E., Davidson. G., Raymond. O.L., Heithersay. P., 2002, The geological framework, distribution and controls of Fe-Oxide Cu-Au mineralisation in the Gawler Craton, South Australia. Part II: Alteration and mineralisation, In:Porter. T.M., (eds.), Hydrothermal iron oxide coppergold and related deposits: A global perspective, Volume 2: Adelaide, PGC Publishing, p: 33–47.
Spies. O., Lensch. G., Mihem. A., 1983, Chemisrty of the post-ophiolithic tertiary volcanic between Sabzevar and Quchan, NE Iran, In: Almassi. A., (eds.), Geodynamic project (geotraverse) in Iran. Geological Survey of Iran, Tehran, p: 247-266.
Steele-MacInnis. M., Lecumberri-Sanchez. P., Bodnar. R.J., 2012, HOKIEFLINCS-H2O-NACL: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl, Computer in Geosciences, Vol: 49, p: 334–337.
Sillitoe. R.H., Burrows. D.R., 2002, New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile, Economic Geology, Vol: 97, p: 1101–1109.
Wanhainen. C., 2005, On the origin and evolution of the Palaeoproterozoic Aitik Cu-Au-Ag deposit, northernmSweden: A porphyry copper-gold ore, modified by multistage metamorphic-deformational, magmatic-hydrothermal, and IOCG-mineralizing events, Luleå, Luleå University of Technology. Unpublished Ph.D. thesis.
Whitney. D.L., Evans. B.W., 2010, Abbreviations for names of rock-forming minerals, American Mineralogist, Vol:  95, p: 185–187.
Williams. P.J., 2010, Classifying IOCG deposits. In: Corriveau. L. Mumin. H., (eds.), Exploring for iron-oxide copper gold deposits: Canada and global analogues, Québec:  Geological Association of Canada and Geological Survey of Canada, p: 11–19.
Williams. P.J., Barton. M.D., Fontboté. L., de Haller. A., Mark. G., Oliver. N.H.S., Marschik. R., 2005, Iron-oxide-copper gold deposits: geology, space-time distribution, and possible modes of origin. Society of Economic Geologists, Economic Geology 100th Anniversary Volume, Denver, p: 371–405.
Zarei. A., Malekzadeh Shafaroudi. A., Karimpour. M.H., 2015, Geochemistry and genesis of iron-apatite ore in Khanlogh deposit, Eastern Cenozoic Quchan-Sabzevar magmatic arc, NE Iran, Acta Geologica Sinica, in press.