The Investigation of Cu geochemical behavior respect to those of Mo, Pb and Zn in Parkam porphyry copper deposit, Kerman province, applying K-means method.

Authors

Department of Mining & Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

      One of the important aspects in data analysis for a large quantity of available data would be the clustering approach. This approach includes important techniques such as Hierarchical approach, K-Means approach based on density methods such as Kohonen method and Genetic algorithm. Clustering method has been used by various researchers.  One of the most fame clustering algorithms is K algorithm means (K-means). Based on this algorithm the aim is to separate the data into K clusters in terms of the distance factor. In the present research, by applying the K-means method, an attempt was made to classify the drill cores in Parkam deposit, into four different assay combinations of Cu, Mo, Pb and Zn, to find the optimum K in every case. Then it continues to classify the data and analyzes the elemental behavior respect to each other.   It is also an attempt to define the appropriate K for sign the class numbers, applying the different class values of K=3 to K=10 to group the analyzed data, reaching to optimize K content. Based on the results, clustering by K=2 clusters for Cu and Mo, K=4 for Cu and Pb, and also K=3 for Cu and Zn are more appropriate respect to the rest available results.  According to the defined presented clusters, it is obvious that through the Cu assay increasing, the Mo assay increased faster and the Pb assay decreases to 0.16 and then increases again,  the same thing happened for Zn. Therefore, it could be suggested that the K-means method, applied for present data analysis, gives a very appropriate aspect to the industry for the making decisions. By applying this method, it is possible to identify the Cu fluctuations in respect to the other elements within the analysis which could reach to take the better decision by industrial co-operators. So, in addition to its help to Cu mine explorations, it could aid to predict the mineral processing approaches like the freedom degrees and also the size efficiencies.
 

Keywords


حسنی پاک.ع.ا.، 1390، اصول اکتشافات ژئوشیمیایی، انتشارات دانشگاه تهران، تهران، چاپ هشتم
شرکت پارس اولنگ، 1388، معرفی محدوده اکتشافی کانسار پرکام، گزارش کار.
شرکت مهندسین مشاور کان­ایران، 1388، مطالعات زمین شناسی و آلتراسیون محدوده پرکام در مقیاس1:5000.
شهاب پور.ج.، 1380، زمین شناسی اقتصادی، انتشارات دانشگاه شهید باهنر کرمان، کرمان.
عرفانی.ح.، 1374، زمین شناسی اقتصادی (کانسارها)، انتشارات دانشگاه تهران، تهران، چاپ چهارم.
قنادپور.س.س.، هزارخانی.ا.، 1390، بررسی و محاسبه پارامترهای اولیه زمین آماری عنصر مس از کانسار مس پورفیری پرکام در استان کرمان، دومین همایش صنایع معدنی.
قنادپور.س.س.، هزارخانی.ا.، 1391، محاسبه دقیق برخی از پارامترهای زمین آماری مس و مولیبدن در سیستم مس پورفیری پرکام کرمان، فصلنامه زمین شناسی کاربردی
      پیشرفته. (تحت داوری)
قنادپور.س.ف.، یقینی.م.، خدمتلو.س.، 1387، کلاس بندی به روش X-Means  و مقایسه با روش K-Means با مطالعه موردی بر روی قطارهای مسافری شرکت رجاء،    
      کنفرانس داده کاوی ایران، دانشگاه امیرکبیر (پلی تکنیک تهران).
 یقینی.م.، قنادپور.س.ف.، خدمتلو،.س.، 1387، ارائه یک روش ابتکاری خوشه­بندی در داده­کاوی با استفاده از الگوریتم ژنتیک و حل یک مطالعه­ی موردی واقعی در صنعت حمل  
      و نقل ریلی، کنفرانس داده کاوی ایران، دانشگاه امیرکبیر (پلی تکنیک تهران).
Anderberg.M.R., 1973, Cluster Analysis for Application, Academic Press, New York.
Berberian.M., King.G.C., 1981, Towards a Paleogeography and Tectonic Evolution of Iran, Can. J. Earth Sci 18: 210–265.
Devijver.P.A., Kittler.J., 1982, Pattern Recognition: A Statistical Approach, Prentice-Hall International, Hemel Hemstead, Hertford Shire, UK.
 
 
 
   
 

Ghannadpour.S.S., Hezarkhani.A., 2012, Determine the initial statistical specifications of Copper and molybdenum elements in Porphyry Copper ore deposit in kerman, International Mining Congress & Expo.
Jain.A.K., 2012, Data clustering: 50 years beyond K-Means, Elsevier, Pattern Recognition Letters, 31, 651-666.
Krishna.K., Narasimha.M., 1999, Genetic K-Means Algorithm, IEEE Transations on Systems, MAN, and Cybernetics – Part B:  
      Cybernetics, 29: 433-439.
Leiluo.X., Xianwu.B., Ruizhong.H., Xingchun.Z., 2012, Relationships between porphyry Cu–Mo mineralization in the inshajiang–
      Red Rivermetallogenic belt and tectonic activity: Constraints from zircon U–Pb and molybdenite Re–Os geochronology,  
      Elsevier, Ore Geology Reviews 48, 460–473.
Menard.J.J., 1995, Relationship between altered pyroxene diorite and the magnetite mineralization in the Chilean Iron Belt, with  
      emphasis on the El Algarrobo iron deposits (Atacama region, Chile), Springer-Verlag, Mineral. Deposita 30, 268-274.
Meshkani.S.A., Mehrabi.B., Yaghubpur.A., Alghalandis.Y.F., 2011, The application of geochemical pattern recognition to regional  
      prospecting: A case study of the Sanandaj–Sirjan metallogenic zone, Iran, Elsevier, Journal of Geochemical Exploration, 108,  
      183-195.
Mora.J.L., Armas-Herrera.C.M., Guerra.J.A., Rodríguez-Rodríguez.A., Arbelo.C.D., 2012, Factors affecting vegetation and soil
      recovery in the Mediterranean woodland of the Canary Islands (Spain), Elsevier, Journal of Arid Environments, 87, 58-66.
Murthy.C.A., 1996, In Search of Optimal Clusters Using Genetic Algorithm, Pattern Recognition Letters, 17: 825-832.
Nelson.P.A., Bellugi.D., Dietrich.W.E., 2012, Delineation of river bed-surface patches by clustering high-resolution spatial grain
      size data, Elsevier, Geomorphology.
Peleg.D., Moore.A., 2000, Accelerating Exact K-Means Algorithm with Geometric Reasoning, (Technical report CMU-CS-00-
      105) Carnegie Mellon University, Pittsburgh, PA. Also available from http://www.cs.cmu.edu/dpelleg/.
Saha.S., Bandyopadhyay.S., 2013, A generalized automatic clustering algorithm in a multiobjective framework, Elsevier, Applied
      Soft Computing, 13, 89-108.
Saric.A., Diordjevic.M., Dimitrijevic.M.N., 1971, Geological map of Shahre-e-Babak, 1:100,000 Series. Geological Survey of  
      Iran, Tehran, Iran.
Sfidari.E., Kadkhodaie-Ilkhchi.A., Najjari.S., 2012, Comparison of intelligent and statistical clustering approaches to predicting
      total organic carbon using intelligent systems, Elsevier, Journal of Petroleum Science and Engineering, 86-87, 190-205.
Tarkian.M., Stribrny.B., 1999, Platinum-group elements in porphyry copper deposits: a reconnaissance study, Springer-Verlag,
      Mineralogy and Petrology 65, 161-183.
Wegner.T., Hussein.T., Hämeri.K., Vesala.T., Kulmala.M., Weber.S. 2012, Properties of aerosol signature size distributions in the
      urban environment as derived by cluster analysis, Elsevier, Atmospheric Environment, 61, 350-360.
Yang.J., Zhuang.Y., Wu.F., 2012, ESVC-based extraction and segmentation of texture features,  Elsevier, Computers &
      Geosciences, 49, 238-247.
Yi.X., Zhang.Y., 2013, Equally contributoryprivacy-preserving K-Means clusteringover verticallypartitioneddata, Elsevier,
 
 
63
 
 
      Information Systems, 38, 97-107.