ارزیابی میزان ماده آلی حاصل از شبکه عصبی مصنوعی در چهارچوب چینه‌نگاری سکانسی: مطالعه موردی از سازند پابده در میدان نفتی مارون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی گروه زمین شناسی و مرکز پژوهشی زمن شیمی و زمین شناسی نفت دانشگاه شهید چمران اهواز

2 دانش آموخته کارشناسی ارشد زمین شناسی نفت دانشگاه شهید چمران اهواز

3 کارشناس ارشد شرکت ملی مناطق نفت خیز جنوب

چکیده

      ویژگی های ژئوشیمیایی در یک چهارچوب چینینگاری سکانسی ، با افزایش دقیق دقت ، تأثیر در نتیجه تغییر در شرایط محیطی بروی این ویژگی ها همچنین آشکار مینماید. در مطالعه مطالعه ، بهره جستن از روش شبکه عصبی مصنوعی جهت سنجش کربن آلی کل ( TOC ) از طریق داده های پتروفیزیکی ، به منظور طراحی شبکهای سه لایهای از نوع پسانتظار با دقت 89٪ موجود است. مطالعه سکانسی نشان داد که در طول طنشست سازند پابده میدان مارون (ائوسنمیانی - الیگوسنپیشین) پیش از پیروی و پسروی در آنجا رخ داد که این نوسانات ، وضعیت گوناگون محیط را برای غنیشدگی یا عدم غنیشدگی ارائه می داد. بههمیندلیل TOCدر بخشهای مختلف سازند از 45/0 تا 4 درصد وزنی متغیر می باشد. این تحقیق بسیار خوب را بین مرزهای پتروفیزیکی ، ژئوشیمیایی و سکانسی نشان می دهد. همچنین مشخص شده است که بهترین شرایط محیطی در زمان ائوسنپسین ایجاد می کند که حاکمیت این شرایط را افزایش می دهد ، باعث افزایش تراز آب دریا و در نتیجه ، ورود مواد آلی و ایجاد شرایط احیا لازم لازم برای حفظ این مواد وجود دارد.
 

کلیدواژه‌ها


شایسته، م.، 1381. بررسی علل آلودگی نفت آسماری بوسیله هیدروژن سولفوره در بخشی از میدان مارون، گزارش شماره پ-5207، اداره کل   زمین­شناسی گسترشی،  
      شرکت ملی مناطق نفتخیز جنوب، 52 صفحه.
علیزاده، ب.، آدابی، م. و تژه، ف.، 1385، ارزیابی پتانسیل هیدروکربورزایی سنگهای منشاء احتمالی در میدان نفتی مارون با استفاده از دستگاه پیرولیز راک ـ ایول 6، مجله  
       علوم دانشگاه تهران، شماره 3، صفحۀ 267- 274.
میرزا قلی­پور، ع. و حقی، ع.، 1369، مطالعه زمین­شناسی میدان نفتی مارون، گزارش شماره پ-4210، اداره کل زمین­شناسی گسترشی، شرکت ملی مناطق نفتخیز  
      جنوب، 55 صفحه.
Al-Qahtani.F.A., 2000, Porosity distribution prediction using Artificial Neural Networks. Msc. Thesis, organtown  
      Virginia University.
Alizadaeh.B., Najjari.S., Kadkhodaie-Ilkhchi.A, 2011, Artificial neural network modeling and cluste  analysis for  
      organic facies and burial history estimation using well log data: A case study of the South Pars gas field, Persian Gulf, Iran. Computers & Geosciences (2011), DOA: 10.10.16/j.cageo.2011.11.024.
Barry.J.K. and Lisa.M.P., 1997, Source rocks in a sequence stratigraphy framework, AAPG Studies in Geology
      #37.
Beers.R.F., 1945, Radioactivity and organic content of some Paleozoic shales. AAPG Bulletin, v. 26, p. 1 – 22.
Behar.F., Beaumont.V., Pentea.do.B., 2001, Rock-Eval 6 Technology: Performances and Developments. Oil and  
      Gas Science and Technology-Rev. IFB, v. 56, p. 111-134.
Bordenave.M.L. and Burwood.R., 1990, Source rock distribution and Maturation in the Zagros Orogenic Belt: Provenance of the Asmari and Bangestan reservoir oil accumulations. Organic Geochemistry, v. 16, p. 369-387.
Catuneanu.O., 2006, Principles of sequence stratigraphy. Elsevier, New York, 375p.
Cyclolog User Guide, 2004, Version 3.2, ENRES INTERNATIONAL COMPANY.
Symposium, paper D.
Embry.A.F. and Johannessen.E.P., 1992, T-R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession, western Sverdrup Basin, Arctic Canada. In: Vorren, T.O., Petroleum Potential. Norwegian Petroleum Society, Special Publication 2, p. 121-146.
Fertle.H., 1988, Total organic carbon content determined from well logs: SPE Formation Evaluation 15612, p.  
      407– 419.
 Herron.S.L., 1988, Source rock evaluation using geochemical information from wireline logs and cores (abs):  
      AAPG Bulletin, v. 72, 1007.
Hertzog.R., Colson.L., Seeman.B., O’Brian.M., Scott.H., 1989, Geochemical logging with spectrometry tools: SPE  
      Formation Evaluation 4, p. 153– 162.
Huang.Z. and Williamson.M.A., 1996, Artificial neural network modeling as an aid to source rock characterization.
      Marine and Petroleum Geology, Vol. 13, No. 2, p. 277-290.
Hunt.J.M., 1996, Petroleum Geochemistry and Geology. 2nd Edition.W.H. Freeman and Company, New York, 743
      p.
Hunt.J.M., and Jaieson.G.W., 1956, Oil and organic matter in source rock of petroleum: AAPG Bulletin, v. 40, p.
      477– 488.
Hussain.F.A., 1987, Source rock identification in the state of Kuwait using wireline logs: SPE 15747, p. 477– 488.
James.G.A. and Wynd.J.G., 1965, Stratigraphic nomenclature of Iranian oil consortium agreement area. The  
      American Association of Petroleum Geologists Bulletin, 49(12), p. 2182–2245.
Kadkhodaie-Ilkhchi.A., Rahimpour-Bonab.H. and Rezaee.M.R., 2009, A committee machine with intelligent
      systems for estimation of total organic carbon content from petrophysical data, Computers and Geosciences 35  
      (2009) p. 457-474.
Kamali.M.R. and Mirshady.A.A., 2004, Total organic carbon content determined from well logs using ∆log R and
      neuro fuzzy techniques. Journal of Petroleum Science and Engineering 45, p. 141–148.
Kotorba, M. j., Wieclaw, D., kosakowski, P., Zacharski, j., Kowalski, A., 2003, Evaluation of Source rock
      and Petroleum potential of middle Jurassic strata in the South-eastern part of Poland".Prezeglad
      Geologiczny,51,1031-1040.
Luffel.D.L., 1992, Evaluation of Devonian shale with new core and log analysis methods: SPE 21297, p. 1192–
      1197.
Magoon.L.B., 1988, The petroleum system-a classification scheme for research, exploration, and resource
      assessment, in L.B. Magoon, ed., Petroleum systems of the united states: USGS Bulletin 1870: p. 2-15.
Meijun.L., Yunlong.J., Liguo.H., 2003, Geochemical-Sequence Stratigraphy and Its Application Prospects in Lake
      Basin. Chinese Journal of Geochemistry, v.22, p. 164-172.
Mitchum.R.M., Vail.P.R., Thompson, S., 1977, Seismic stratigraphy and Global changes of sea level, Part 2:
      Depositional sequence as a basic unit for stratigraphic analysis. In : Payton, C.E., (Edt.), Seismic stratigraphy –
      Application to hydrocarbon exploration. AAPG, Memoir No.26, p. 53-62.
Mohaghegh.S., Arefi.R., Bilgesu.H.I., Ameri.S., Rose.D., 1994, Design and development of an artificial neural
 
 
 
 
29
 
      network for estimation of formation permeability. SPE 28237, Proceeding of SPE Petroleum Computer
 
 
      Conference, Dallas TX.
Pasley.M.A., Gregory.W.A., Hart,G.F., 1991, Organic matter variation in transgressive and regressive shales.
      Organic Geochemistry 17, p. 483–509.
 Passey.Q.R., Creaney.S., Kulla.J.B., Moretti.F.J., Stroud.J.D., 1990, A Practical Model for Organic Richness from
      Porosity and Resistivity logs, AAPG Bulletin v.74, n.12, p. 1777-179.
Peters.K.E. and Cassa.M.R., 1994, Applied source rock geochemistry. In: The petroleum system - from source to
      trap: Magoon, L.B. Dows, W.G (eds.), AAPG Memoir 60, p. 93-117.
Schmoker.J.W., 1981, Determination of organic-matter content of Appalachian Devonian shales from gamma-ray
      logs: AAPG Bulletin, v. 65, p. 2165–2174.
Serra.O.L., 1986, Fundamentals of Well-Log Interpretation: The Acquisition Logging Data, v. 1, Elsevier. 679 p.
Sloss.L.L., 1963, Sequences in the Cratonic interior of North America. Geological Society of America Bulletin, v.
      74, p. 93-114.
Swanson.V.E., 1960, Oil yield and uranium content of black shales: USGS professional paper 356-A, p. 1–44.Van Wagoner.J.C., Mitchum.R.M., Campion.K.M., Rahmanian.V.D., 1990, Siliciclastic sequence stratigraphy in welllogs, cores, and outcrops: Concepts for high-resolution correlation of time and facies. AAPG Methods in 
      Exploration Series No.7, 55 p.
Worthington.P.F., 1990, Sediment cyclicity from logs In From Hurst, A., Lovell, M. A. & Morton, A. C., 1990, Gelogical Applications of Wireline Logs Geological Society Special Puplications No. 48, p. 123-132.