Detecting Mapping Unknown Spectral Features from ALI, ASTER and Hyperion Images using Correlation Coefficient Method. Case Study: Sarcheshmeh copper mine, IRAN.

Authors

1 Mining Department, Shahid Bahonar University of Kerman, Kerman,.

2 Mining Eng. Department, Isfahan University of Technology, Isfahan, Iran

3 Mining Eng. Department, Shahid Bahonar University of Kerman, Kerman, Iran.

4 Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran.

Abstract

One of the main objectives of employing multi and hyper spectral satellite imagery is to detect and identify the spectral behavior of different sacrificial coverage. To achieve this goal it is necessary to use algorithms capable of detecting such spectral differences both in lab scale and real field multi spectral images. In current study, we have developed an algorithm in MATLAB, based on converting mineral reflectance spectra into images, computing the correlation coefficient of the unknown spectra taken from satellite images (either multi or hyper spectral images) with those of published mineral reflectance spectra from USGS spectral library. The reflectance spectrum that is found with the highest correlation coefficient with the one that is extracted from an image is considered as the best match to the unknown spectrum. In order to evaluate the performance of this algorithm, we used the spectra of an indicator of alteration mineral from USGS spectral library. The results show that the algorithm could recognize the spectra from USGS spectral library with high degree of match. Furthermore, the performance of the algorithm was evaluated using real satellite datataken from phyllic alteration zone of Darrehzar porphyry copper deposit located 18 km south of Sarcheshmeh copper mine. Results show that the algorithm was capable of finding a match with the muscovite spectra from the USGS spectral library. Finally it is concluded that the spectra fitting based on correlation can effectively be used for mineral recognition using the already known spectra published by spectral research centers such as USGS.
 

Keywords


بابایی، م. ، 1388، استفادهازروشهایچندمتغیرهپیشرفتهجهت مدلسازیاکتشافیمنطقهسرچشمهوکوهپنجکرمان، پایان نامه کارشناسی ارشد رشته مهندسی معدن، گرایش اکتشاف، دانشگاه شهید باهنر کرمان.
نجفیان، ط. ، 1389، نقشه برداری از کانی های مناطق دگرسان شده منطقه سرچشمه استان کرمان با استفاده از داده های چندطیفی و ابرطیفی ، پایان نامه کارشناسی ارشد رشته مهندسی معدن، گرایش اکتشاف، دانشگاه شهید باهنر کرمان.
نجفیان، ط. ، رنجبر، ح. ، فتحیان­پور، ن. ، 1390، بررسی قدرت تفکیک آلتراسیونهای مرتبط با کانسارهای مس پورفیری با استفاده از تجمیع طیفی داده های ALI و ASTER ، اولین کنگره­ی جهانی مس، تهران، ص 109-120.
Center for the Study of  Earth from Space (CSES), 1992, SIPS User's Guide, Spectral Image Processing System, Version 1.2,
   Center for the Study of Earth from Space, Boulder, CO, p. 88.
Clark, R. N., Gallagher, A. J., and Swayze, G. A., 1990, Material absorption band depth mapping of imaging spectrometer data
   using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials, in
   Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication 90-54, pp. 176 –  
   186.
Clark, R. N., Swayze, G. A., Gallagher, A., Gorelick, N., and Kruse, F. A., 1991, Mapping with imaging spectrometer data using  
   the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials, in
   Proceedings, 3rd Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, JPL Publication 91-28, pp. 2-3.
Clark, R. N., Swayze, G. A., Gallagher, A. J., King, T. V. V., and Calvin, W. M., 1993, The U. S. Geological Survey, Digital
   Spectral Library, Version 1: 0.2 to 3.0 microns. U.S. Geological Survey Open File Report 93-592, 1340 pages.
 Crowley, J. K., and Clark, R. N., 1992, AVIRIS study of Death Valley evaporite deposits using least-squares band-fitting methods,
   in Summaries of the Third Annual JPL Airborne Geoscience Workshop, JPL Publication 92-14, v 1, pp. 29-31.
Elvidge, C. D., 1990, Visible and infrared reflectance characteristics of dry plant materials, International Journal of Remote
   Sensing, v. 11(10), pp. 1775 - 1795.
Gersman, R., Ben-Dor, E., Beyth, M., Doavigad, Abraha, M. & Kibreab, A., 2008. Mapping of hydrothermally altered rocks by the
   EO-1 Hyperion sensor,Northern Danakil Depression, Eritrea, International Journal of   Remote Sensing, 29, 3911–3936.
Goetz, A. F. H., Vane, G., Solomon, J. E., and Rock, B. N., 1985, Imaging spectrometry for earth remote sensing, Science, v. 228,
   pp. 1147 - 1153.
Grove, C. I., Hook, S. J., and Paylor, E. D., 1992, Laboratory reflectance spectra for 160 minerals 0.4 - 2.5 micrometers, JPL
 
 
 
 
 
67
 
 
   Publication 92-2.
 
 
Gupta, R., 2003. Remote sensing geology, Springer, 655p.
Hubbard, B. E. , Crowley, J. K. , Zimbelman, D. R. , 2003 “Comparative Alteration Mineral Mapping Using Visible to Shortwave
   Infrared (0.4–2.4 µm) Hyperion, ALI, and ASTER Imagery”,  Geoacience and Remote Sensing, Vol. 41, NO. 6, 1401-1410.
Hubbard, B.E. & Crowley, J.K., 2005  Mineral mapping on the Chilean–Bolivian Altiplano using co-orbital ALI, ASTER and
   Hyperion imagery: Data dimensionality issues and solutions, Remote Sensing of Environmen, 99, 173–186.
Korb, A. R., Dybwad, P., Wadsworth, W., and Salisbury, J. W., 1996, Portable FTIR spectrometer for field measurements of
   radiance and emissivity, Applied Optics, v. 35, pp. 1679-1692.
 Kruse, F. A., A. B. Lefkoff, J. B. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, and A. F. H. Goetz, 1993, The
   Spectral Image Processing System (SIPS) - Interactive Visualization and Analysis of Imaging spectrometer Data, Remote Sensing
   of the Environment, v. 44, p. 145 - 163.
Mazer, A. S., Martin, M., Lee, M., and Solomon, J. E., 1988, Image Processing Software for Imaging Spectrometry Analysis,
   Remote Sensing of the Environment, v. 24, no. 1, p. 201-210.
Montgomery,  D. , 2003, Applied Statistics and Probability for Engineers,  3rd ed., Wiley.
Salisbury, J. W., D'Aria, D. M., and Jarosevich, E., 1991a, Midinfrared (2.5-13.5 micrometers) reflectance spectra of powdered
   stony meteorites. Icarus, v. 92, pp. 280-297.
Salisbury, J. W., Wald, A., and D'Aria, D. M., 1994, Thermal-infrared remote sensing and Kirchhoff's law 1. Laboratory
   measurements, Journal of Geophysical Research, v. 99, pp. 11,897-11,911.
Salisbury, J. W., Walter, L. S., Vergo, N., and D'Aria, D. M., 1991b, Infrared (2.1- 25 micrometers) Spectra of Minerals. Johns
   Hopkins University Press, 294 p.
Simon, K., Beckmann, T. & Beckmann, T., 2002, Hyperion  Level 1GST (L1GST) Product output  Files Data Format Control Book
   (DFCB), Earth Observing-1 (EO-1), USGS, EO1-DFCB-0003 ,Version 1.0.
Stephen, G. U., Pearlman, J. S., Mendenhall, J. A., Reuter, D., 2003. Overview of the Earth Observing One (EO-1) Mission, IEEE   
   41, 1148-1159.
Swayze, G. A., and Clark, R. N., 1995, Spectral identification of minerals using imaging spectrometry data: evaluating the effects
   of signal to noise and spectral resolution using the Tricorder Algorithm, in Summaries of the Fifth Annual JPL Airborne Earth
   Science Workshop, JPL Publication 95-1, pp. 157 - 158.
Yuan, J., Niu, Z., 2008. Evaluation of Atmospheric Correction Using FLAASH, International Workshop on Earth Observation and
   Remote Sensing Applications (IEEE), Beijin, 1–6.