Study of mineralization and fluid inclusions study in the Chenar-e-Olya iron skarn deposit, NW of Hamedan

Authors

Department of Geology,Lorestan Univercity, Khorramabad,Iran

Abstract

      The Chenar-e-Olya iron deposit is located in Hamedan province and 24 km northern of Asadabad city. The deposit is located in terminal part of northwest of Sanandaj- Sirjan structural zone. Intrusion of Almougholagh quartz syenite mass in to the volcanic sedimentary rocks of Songhor series with Triassic- Jorasic age culminated in Chenar mineralization. Mineralization shows two structures namely massive and veins. Main ore forming mineral of Chenar deposit is magnetite.Hematite forms the second abundant ore mineral. Pyrite is the most aboundant sulfide phase. Fluid inclusions in quartz samples contain two phases resembling rich in liquid and elongating in shape. Microthermometry studies on fluid inclusions show that the average salinity and trapping temperature are respectively within 2.5-15.5wt%NaCl and 165-170 °C. Density of fluid in inclusions in quartz samples ranges between 0.89 to 1.02. Estimated depth of mineralization is 100 meters. The rate of pressure during the fluid formation approximated about 50 bars. Ore body at the Chenar experienced remobilization and metasomatism along shear zones, faulted boundaries and surface fractures. Geological observations combined with fluid inclusion studies including salinity, homogenization temperature indicate that the iron ore mineralization in the Chenar-e- Olya deposit occurred at the late stage of skarnization process.
 

Keywords


 
 
 
اشراقی، س.،1380، نقشه زمین شناسی100000/1 تویسرکان، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور.
 
 
توکلی، ح.،1383، کانی شناسی، ژئوشیمی و خاستگاه کانسارهای آهن شمال غرب همدان، پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس، تهران، ایران، 154 ص.
رستمی پایدار، ق.، لطفی، م.، قادری، م.، امیری. ا.، عابدینی، م.،1389، یافته های جدید کانه نگاری و شیمی بلور مگنتیت و پیریت درکانسارهای آهن باباعلی وگلالی، باختر همدان، ایران، مجله علوم زمین، شماره 77، صفحه 121- 130.
شرکت ایران کانش.، 1379، طرح اکتشاف مقدماتی سنگ آهن چنار علیا، اداره کل صنایع و معادن استان همدان، 88 ص.
Bodnar. R. J., 1993, Revised  equation and table for determining the freezing point depression of H2O-NaCl solution, Geochim .Cosmochim .Acta, Vol: 57, p: 683-684.
Craij. J. R., Vaughan. D. J., 1981, Ore microscopy and ore petrography, Copyright by John Wiley and sons, 406p.
Drummond. S. E., Ohmoto. H., 1985, chemical evolution and mineral deposition in boiling hydrothermal systems, Economic Geology, Vol: 80, p: 126-147.
Einaudi. M. T., Meinert. L. D., Newberry. R. J., 1981, Skarn deposits, Economic Geology, p: 317–391.
Eugster. H. P., 1986, Minerals in hote water, Am. Mineral, Vol: 71, p: 655-673.
Hass. J. I., 1971, The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure, Economic Geology, Vol: 66, p: 940-946.
Kwak. T. A. P., Tan. T. H., 1981, The geochemistry of zoninig in the skarn mineral at the at the King Island_Dolphine mine, Economic Geologyv, Vol: 76, p: 468-497.
Lingang.  Xu.,et al., 2010, Geology geochemistry and age constrains on the Mengku skarn iron deposite in Xinjiang Altai, NW China, jornal of Asian Earth Sciences, Vol: 39, No: 5, p: 423-440.
Meinert. L. D., 1992, Skarn zonation and fluid evalution in the Groundhog Mine,Central Mining District , New Mexico, Economic Geology, Vol: 82, p: 523-545.
Mikucki. E. J., Groves. D. I., 1990, Genesis of primary gold deposits:gold transport and depositional models, Geol.Dep.and Uni.Extension, The Uni.of Western Aus, Vol: 20, p: 212-220.
Pirajno.  F., 1992, Hydrothermal Mineral Deposits – Principles and fundamental concepts for the Exploration Geologist, Springer, 709p.
Ramdohr. P.,1980,The ore minerals and their intergrowths, Sec. Edition, English translation of the 4th. Edition. Two valumes, pergamon press, 1205p.
Roedder.  E., 1984, Fluid Inclusions, Rev. Mineralogy, Mineral. Soc. Am, p: 12-644.
Scott. A. M., Watanabe. Y ., 1998, ((Extreme boiling)) model for variable salinity of the Hokko low- sulfidation epithermal Au prospect,southwestern Hokkaido, Japan Mineralium Deposita, Vol: 33, p: 568-578.
Shepherd. T. J., Ranbin. A. H., Alderton D .H. M., 1985, A Practical Guide to fluid inclusion studies, Blackie, Glasgow, 239p.
Singoyi. B., Zaw. K., 2001, A petro logical and fluid inclusion of magnetite scheelite skarn mineralization at Lara, northwestern Tasmania: implications for ore genesis, Chemical geology, Vol: 173, p: 239 – 253.
Wang. Y., Sasaki. M., Sasada.  M., Chen. C. H., 1999, Fluid inclusion studies of the Chinkuashin high –sulfidation gold – copper deposits in Taiwan, Chemical Geology, Vol: 154, p: 155-167.
Wilkinson.  J. J., 2001, Fluid inclusions in hydrothermal ore deposits, Lithos, Vol: 25, p: 229- 279.
Zamanian.   H . ,2003, Iron mineralization related to the Almoughlagh and south Ghorveh batholiths, western Iran, with a specific refrence to the Baba Ali and Gelali deposits, thesis sbmitted for the degree of PhD, Univercity of Pune, 215p.
 Zhou. T., Yang.  F., Yuc.  S., Liu.  X., Zhang.  X., Fan. Y., 2007, Geochemistry and evolution of ore- forming fluids of the Yueshan Cu-Au skarn and vein- type deposits, Anhui province, south China, Ore Geology reviews, Vol: 31, p: 279-303.