تکامل فیزیکو ـ شیمیایی سیال گرمابی در کانسار مس پورفیری سارا (پرکام)، استان کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد زمین شناسی اقتصادی دانشگاه دامغان

2 استاد یار دانشگاه دامغان دانشکده علوم زمین

چکیده

کانسار مس پورفیری سارا (پرکام) در استان کرمان و 35 کیلومتری شمال شهربابک قرار داده است. این کانسار بر روی کمربند ماگمایی ارومیه - دختر واقعیت دارد. مجموعه آتشفشانی رازک با سن ائوسن میزبان این کانسار می باشد. کانیزایی مس و مولیبدن در ارتباط با جایگزینی توده های نفوذی دیوریت پورفیری و کوارتز دیوریت پورفیری با سن میوسن وجود ندارد. مطالعات پتروگرافی سیالات نشان می دهد که در کانسار سارا 8 گروه سیال درگیر شامل سیال درگیر چند فازی ، سیال درگیر شور حاوی کانی اپک ، سیال درگیر شور ساده ، سیال درگیر غنی از گاز حاوی کانی اپک ، سیال درگیر غنی از گاز ساده ، سیال درگیر تک فازی گازی ، سیال درگیر غنی از میانه حاوی کانی اپک و سیال درگیر غنی از سایر موارد قابل مشاهده ساده میباشند. سوالات درگیر چند فازی با بیشترین فراوانی همگن شدن در گستره دمای ° C 500-400 و بیشترین فراوانی شوری در گستره Wt. ٪ NaCl50-40 نشاندهنده اولین سیالاتی هستند که باعث ایجاد کانسار سارا شده اند. سیالات درگیر غنی از میانه با بیشترین فراوانی دمای همگن شدن در محدوده 300 تا ° C 350 و بیشترین فراوانی شوری در گستره Wt.٪ NaCl 20-10 نشان دهنده آخرین گردش سیال گرمابی میباشند. نتایج دماسنجی سیالات درگیر نشان می دهد اولین سیالات گرمابی در دمای حدود ° C 500 و فشار نوار 600 به دام افتتاح شده است. حداکثر عمق جایگزینی کانسار سارا حدود کیلومتر 3/2 می باشد. شوری و دمای همگن شدن سوالات درگیر نشان دهنده این است که کانیزایی در کانسار مس پورفیری سارا در ارتباط با اختلالات سیالات ماگمایی و جوی صورت گرفته است.
 

کلیدواژه‌ها


کان ایران، 1387، نقشه زمین­شناسی کانسار سارا، مقیاس 5000/1.
Anonymous, 1973, Exploration for ore deposits in Kerman Region, Institute for Geological and Mining Exploration and Institution of Nuclear and other Minerall Raw Materials, Beograd-Yugoslavia, Geological Survey of Iran, Report No. Yu/53, 247 p.
Bean.R.E., and Titly.S.R., 1981, Porphyry copper deposits, Part II: Hydrothermal alteration and mineralization, Economic Geology, 75 th. Ann, p: 214-268.
Bodnar.R.J., and Beane.R.E., 1980, Themporal and Spatial Variations in Hydrothermal Fluid Characteristics during Vein Filling in Preore Cover Overlying Deeply Buried Porphyry Copper-Type Mineralization at Red Mountain, Arizona, Economic Geology,Vol: 75, p: 876–893.
Bodnar.R.J., 1994, Synthetic fluid inclusions: XII: The system H2O-NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt % NaCl solution." Geochimica et Cosmochimica Acta, Vol: 58, p: 1053–1063.
Bodnar.R.J., and Vityk.M.O., 1994,. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In Fluid Inclusions in Mineras, Methods and Applications.B. De Vivo and M. L. Frezzotti, eds., pub. by Virginia Tech, Blacksburg, VA, p: 117-130.
Calagari.A.A., 2004, Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran, Journal of Asian Earth Sciences, Vol: 23, p: 179–189.
Cunningham.C., 1978, Pressure gradients and boiling as mechanisms for localizing ore in porphyry system, Research U. S. Geology Survey, Vol: 6, p: 745–754.
Dimitrijevic.M., 1973, Geology of Kerman region, Institute for Geological and Mining Exploration and Institution of Nuclear and Other Mineral Raw Materials, Beograd-Yugoslavia, Geological Survey of Iran, Report No. Yu/52, 334 p.
Drummond.S.E. and Ohmoto.H., 1985, Chemical evolution and mineral deposition in boiling hydrothermal systems, Economic Geology, Vol: 80, p: 126–147.
Hezarkhani.A., 2009, Hydrothermal fluid geochemistry at the Chah-Firuzeh porphyry copper deposit, Iran: Evidence from fluid inclusions, Geochemical Exploration, Vol: 101, p: 254–264.
Hassanzadeh.J., 1993, Metallogenic and tectono-magmatic events in the SE sector of the Cenozoic active continental margin of Iran (Shahr-Babak area, Kerman province).
Ulrich.T., Gunther.D., Heinrich.C.A., 2001, The Evolution of a Porphyry Cu-Au Deposit, Based on LA-ICP-MS Analysis of Fluid Inclusions: Bajo de la Alumbrera, Argentina, Economic Geology,Vol: 96, p: 1743–1774.
Wilkinson.J.J., 2001, Fluid inclusions in hydrothermal ore deposits, Lithos, Vol: 55, p: 229–272.
Zolensky.M.E., and Bodnar.R.J., 1982, Identification of fluid inclusion daughter minerals using Gandolfi X-ray techniques, American Mineralogist, Vol: 67, p: 137–141.
Saric.A., Djordjevic.M., and Dimitrijevic.M.N., 1972, Geological map of Shahr-Babak, Scale 1/100000, Geological Survey of Iran, Tehran, Iran. Geological Society of America, Vol: 32, p.
Shepherd.T.J., Ranbin.A.H., Alderton.D.H.M., 1985, A Practical Guide to Fluid Inclusion Studies, Blackie, Glasgow, 239 p.
Redmond.P.B.,Einaudi.M.T.,Inan.E.E.,Landtwing.M.R., Heinrich.C.A., 2004, Copper deposition by fluid cooling in intrusion-centered system: New insights from the Bingham porphyry ore deposit, Utah, 217–220.
 
 
Taghipour.N., Aftabi.A., Mathur.R., 2008, Geology and Re-Os Geochronology of Mineralization of the Miduk Porphyry Copper Deposit, The Society of Resource Geology, Vol: 2, p: 143–160.
Unpublished Ph.D. thesis,University of California, Los Angeles, 204 p.
Roedder.E., 1984, Fluid inclusions, Reviews in Mineralogy, Vol: 12, 646 p.
Taylor.J.H.R., 1997, Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes, L .H. (Ed.), Geochemistry of Hydrothermal Ore Deposits, 3rd ed. Wiley, New York, p: 229–302.