کاربرد داده‌های هیدروشیمیایی در مطالعه هیدرودینامیک مخزن آسماری، میدان نفتی کرنج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده علوم زمین دانشگاه شهید چمران اهواز

2 دانشجوی کارشناسی ارشد دانشکده علوم زمین دانشگاه شهید چمران اهواز

3 کارشناس ارشد مناطق نفت خیز جنوب

چکیده

هیدرودینامیک مهمترین عامل مکانیسم جابجایی سیال در مخازن تولید هیدروکربن است. در بررسی هیدروشیمایی مخلوط شده از نمودار پایپر و نمودار ترکیبی استفاده شد. داده های هیدروشیمیایی تیپ آب مخلوط را از نوع کلروره-سدیک نشان داده و از گزینه های مختلف آب در مناطق مختلف میدان آب ، حکایت می کند و وجود یک جریان هیدرودینامیک نشان می دهد. فشار جریان و اختلال دقیقاً با این نمودارها ، حکم از ضعف بودن جریان مینماید داده شده است. ورود یک آب با TDS کمتر ، TDI کلی میدان را به بطور محسوسی کاهش نداده است. فشار آب در چاههای مورد نیاز مطالعه همان نفت ، با گذشت زمان کاهش داده شده و بهترین شرایط را در چاههای 7 و 14 نشان می دهد. در حالت کلی ، نتایج ارزیابی بهره دهی و فشار در چاههایی که در میدانجنوبی میدان قرار دارند ، وضعیت را به شما نشان می دهد. نتایج مطالعه نشان داد که سطح پتانسیومتریک آبخوان مخزن بصورت کج و غیر افقی است. بررسی مدل هیدرودینامیکی نشان دهنده وجود دو ناحیه با هد بالا در نزدیکی چاههای 4 و 5 است و از این مکانها آب است که در سایر نقاط جریان می یابد. انبساط آب و فشار سر جمع بعنوان عامل جریان هیدرولیکی پیشنهاد می شود.
.

کلیدواژه‌ها


آقا­نباتی، ع.، 1385، زمین شناسی ایران، سازمان زمین شناسی و اکتشافات معدنی کشور، چاپ دوم، 603 صفحه.
رضایی، م.، نخعی، م.، مصطفوی، ر.، مطالعه ویژگیهای هیدروشیمیایی دشت ساری، دوازدهمین همایش انجمن زمین شناسی ایران- اهواز، 1387.
صابری، ا،. مشخصات سنگ­شناسی، محیط رسوبگذاری و چینه­نگاری سکانسی سازند آسماری در میدان نفتی کرنج، پایان­نامه کارشناسی ارشد، دانشگاه تهران، 1386، 100 صفحه.
صداقت، م، 1385، زمین و منابع آب (آب­های زیرزمینی)، انتشارات دانشگاه پیام نور، 368 صفحه.
قلی­پور، ع.، مطالعه وضعیت هیدرودینامیک در سازند آسماری در فروافتادگی دزفول، 1369، 84 صفحه.
مطیعی، ه.، زمین­شناسی نفت زاگرس 1 و 2،چاپ نخست، سازمان زمین­شناسی کشور، 1374، 1009 صفحه.
Adams, C.G., Bourgeois, E., 1967. Asmari Formation, Biostratigraphy. Geological and Exploration Division, Iranian Oil Offshore Co., Rep. No. 1074.
Anissimov, L., Postnova, E., and Merkulov, O., 2000, Tengiz oilfield: geological model based on hydrodynamic data, Petroleum Geoscience,  v. 6 no. 1 p. 59-65.
Bjørlykke, K., 1996, Lithological control on fluid flow in sedimentary basins: in Fluid flow and transport in rocks – Mechanisms and effects, B. Jamtveit and B.W.D. Yardley (eds.): Chapman and Hall, p. 15-34.
Bordenave, M. L., Hegre, J. A., 2005. The influence of tectonics on the entrapment of oil in the Dezful embayment, Zagros Fold belt, Iran. Journal of Petroleum Geology, Vol. 28(4), October, p. 339 – 368.         
Castany, G., 1981, Hydrogeology of deep aquiers the hydrogeologicalbasin as the basis of groundwater, management, Episodes, v.4, no. 3, p.18-22.
Cloutier, V., Origin and geochemical evolution of groundwater in Paleozoic Basses –Laurentides sedimentary rock aquifer system St. Lawrence Lowlands, Quebec, Canada. PhD Thesis, INRS –Eau, Terre & Environment, Quebec, Canada (in French and English), (2004).
Craft, B. C, Hawkins, M. F., Applied petroleum reservoir engineering, 2nd Ed, prentice hall, (1991) 431
Dennis, H., J. Baillie, T. Holt, and D. Wessel-Berg, 1998, Hydrodynamic activity and tilted oil-water contacts in the North Sea: presented at NPF Conference, Haugesund.
Dias, T.A., Tett, D.L., and Croasdaile, M.T., Evidence for a Hydrodynamic Aquifer in the Lower Miocene Sands of the Mad Dog Field, Gulf of Mexico, Search and Discovery Article #10221 (2010), Adapted from extended abstract from AAPG Convention, Denver, Colorado, June 7-10, 2009
Dilsiz, C.N., 2006, Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwestern Turkey, based on hydrochemical and isotopic data, Hydrogeology J., v.14, no. 4, p. 562-572.
Eisenberg, L.I., M.V. Langston, and R.E. Fitzmorris, 1994, Reservoir Management in a Hydrodynamic Environment, Iagifu-Hedinia Area, Southern Highlands, Papua New Guinea: SPE 28750, presented at the SPE Asia Pacific Oil & Gas Conference held in Melbourne, Australia, November 7-10, 1994.
Estrada, C. and C. Mantilla, 2000, Tilted oil water contact in the Cretaceous Caballos Formation, Puerto Colon Field, Putumayo Basin, Colombia: SPE 59429, presented at the 2000 SPE Asia Pacific Conference on Integrated Modelling for Asset Management held in Yokohama, Japan, April 25-26, 2000.
Hem, J. D., Study and interpretation of the chemical characteristics natural water. U.SGeological Survey Water Supply Paper, (1970) 1473.
Hubbert, M. K., The theory of ground water montion, J. Geol. 48 (1940) 785-944.
Kehew, A.E., 2001, Applied chemical hydrogeology, Prentice Hall, Inc., 368P.
King, H.M., 1967, Application of hydrodynamics to oil exploration: Proceedings of the Seventh World Petroleum Congress: v. 1b, p. 59-75.
Letouzey, J., Sherkati, S., 2004. Salt movement, tectonic events, and structural style in the central Zagros fold and thrust belt (Iran), paper presented at Salt Sediments Interactions and Hydrocarbon Prospectivity: Concepts, Applications, and Case Studies for the 21st Century, 24th Bob F. Perkins Research Conference, article Gulf Coast Sect., Soc. Sediment. Geol., Houston, Tex.
Marie, A., and Vengosh, A., Sources of salinity in groundwater from Jericho area, Jordan Valley, Groundwater, 39(2) (2001), 240-248.
Mazor, E., Chemical and Isotopic Groundwater Hydrology, Third Edition, (2004) 453.
Selley, R. C., Elements of petroleum geology, 2nd ed, 1998.
Stober, I. and Bucher, K., Deep groundwater in the crystalline basement of the Black Forest region. Applied Geochemistry, 14 (1999) 237-254.
Thomasen, J.B. and N.L. Jacobsen, 1994, Dipping Fluid Contacts in the Kraka Field, Danish North Sea: SPE 28435, presented at the SPE 69th Annual Technical Conference and Exhibition held in New Orleans, Louisiana, U.S.A. September 25-28, 1994.
Wells, P.R.A., 1987, Hydrodynamic Trapping in the Cretaceous Nahr Umr Lower Sand of the North Area, Offshore Qatar: SPE 15683, presented at the Middle East Oil Show held in Bahrain, March 7-10.