Prediction of Sedimentary Features in Asmari Formation, SW of Iran: Using Electrofacies Analysis

Authors

1 Department of Geology, Faculty of Earth Sciences., ShahidChamran University, Ahvaz

2 NIOC, Ahvaz

Abstract

     One of the most important elements in reservoir characterization is mapping of the features and heterogeneities of the reservoir. In heterogeneous carbonate reservoirsdue to presence of high complexity and heterogeneity, the porosity and permeability distribution is diverse and ambiguous. Accordingly, use of modern methods in improved assessment of these reservoirs would be essential. Among these approaches, identification and application of Electrofacies (Log Facies) has been considered as one of the most important methods in production of reservoirs as well as development of the Oilfields.The present work is devoted to utilize Self Organization Map (SOM) mode in neural network to clustering electrofacies of Asmari Formation in one of the oil field in southwest Iran. The Electrofacies reservoir quality shows that EF1 and EF5 appear to have the best reservoir characteristics, followed by EF2 and EF6. By contrast, Electrofacies 3, 4 and 7 show poor reservoir quality. Cited facies correlated with Petrographical features to relate carbonate and sandstone sedimentary fabrics with pore space size distribution and petrophysical characteristics of electrofacies in studied wells. Totally the defined facies show well correlation with petrography of the analyzed intervals and hence the electrofacies defined in this study could be considered as replacement of sedimentary ones and propagated to all wells of this field.
 

Keywords


پورامینی بزنجانی،س.،آدابی،م. ح.، 1392، تاثیر دیاژنز بر کیفیت مخزنی سازند کنگان در میدان لاوان، خلیج فارس،مجله زمین شناسی کاربردی پیشرفته، شماره10، ص 33-47.
ذاکری،م.،موسوی حرمی،س. ر.، خانه­باد،م.، صابری، ا.، 1393، رخساره­ها، دیاژنز و کیفیت مخزنی سازند سروک در میدان نفتی کوپال، در جنوب غرب ایران،مجله زمین شناسی کاربردی پیشرفته، شماره14، ص 46-59.
میرزا قلی­پور، ع.، حقی، ع.، 1369، مطالعه زمین­شناسی میدان نفتی مارون، گزارش شماره پ-4210، اداره کل زمین­شناسی گسترشی، شرکت ملی مناطق نفتخیز جنوب، 55ص.
Ahr, W. M., 2011, Geology of carbonate reservoirs: the identification, description and characterization of hydrocarbon reservoirs in carbonate rocks: John Wiley & Sons.
Astel, A., S. Tsakovski, P. Barbieri, and V. Simeonov, 2007, Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets: Water Research, v. 41, no. 19, p. 4566–4578.
Baldwin, J. L., R. M. Bateman, and C. L. Wheatley, 1990, Application of a neural network to the problem of mineral identification from well logs: The Log Analyst, v. 31, no. 05.
Baouche, R., A. Nedjari, and R. Chaouchi, 2009, Analysis and interpretation of environment sequence models in Hassi R’Mel Field in Algeria.
Bourquin, S., C. Boehm, J. Clermonté, M. Durand, and O. Serra, 1993, Analyse faciologique et séquentielle du Trias du centre-ouest du Bassin de Paris à partir des données diagraphiques: Bull. Soc. Géol. Fr, v. 2, p. 177–188.
Busch, J. M., W. G. Fortney, and L. N. Berry, 1987, Determination of lithology from well logs by statistical analysis: SPE Formation Evaluation, v. 2, no. 04, p. 412–418.
Flügel, E., 2004, Microfacies of carbonate rocks: analysis, interpretation and application: Springer.
Francesconi, A., F. Bigoni, P. Balossino, N. Bona, F. Marchini, and M. Cozzi, 2009, Reservoir Rock Types Application-Kashagan, in SPE/EAGE Reservoir Characterization & Simulation Conference.
Ilkhchi, A. K., M. Rezaee, and S. A. Moallemi, 2006, A fuzzy logic approach for estimation of permeability and rock type from conventional well log data: an example from the Kangan reservoir in the Iran Offshore Gas Field: Journal of Geophysics and Engineering, v. 3, no. 4, p. 356.
Kohonen, T., 1972, Correlation matrix memories: Computers, IEEE Transactions on, v. 100, no. 4, p. 353–359.
Lee, S. H., and A. Datta-Gupta, 1999, Electrofacies characterization and permeability predictions in carbonate reservoirs: Role of multivariate analysis and nonparametric regression, in SPE annual technical conference: p. 409–421.
Lennon, R. B., 1976, Geological factors in steam-soak projects on the west side of the San Joaquin basin: Journal of Petroleum Technology, v. 28, no. 07, p. 741–748.
Lim, J.-S., J. M. Kang, and J. Kim, 1997, Multivariate statistical analysis for automatic electrofacies determination from well log measurements, in Asia Pacific oil & gas conference & exhibition: p. 109–113.
Loo, A. H. B., H. T. W. Tan, P. P. Kumar, and L. G. Saw, 2001, Intraspecific variation in Licuala glabra Griff.(Palmae) in Peninsular Malaysia–a morphometric analysis: Biological Journal of the Linnean Society, v. 72, no. 1, p. 115–128.
Lucia, F. J., 1995, Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization: AAPG bulletin, v. 79, no. 9, p. 1275–1300.
Mathis, B., J. P. Leduc, and T. Vandenabeele, 2003, From the Geologists’ Eyes to Synthetic Core Descriptions: Geological Log Modeling Using Well-Log Data.
Mukherjee, A., 1997, Self-organizing neural network for identification of natural modes: Journal of Computing in Civil Engineering, v. 11, no. 1, p. 74–77.
Mwenifumbo, C. J., and J. P. Blangy, 1991, 30. SHORT-TERM SPECTRAL ANALYSIS OF DOWNHOLE LOGGING MEASUREMENTS FROM SITE 7041.
Pirson, S. J., 1970, Geologic well log analysis: Gulf Pub. Co.(Houston).
Qi, L., and T. R. Carr, 2006, Neural network prediction of carbonate lithofacies from well logs, Big Bow and Sand Arroyo Creek fields, Southwest Kansas: Computers & geosciences, v. 32, no. 7, p. 947–964.
Rahimpour‐Bonab, H., A. Asadi‐Eskandar, and R. Sonei, 2009, Effects of the PermianTriassic boundary on reservoir characteristics of the South Pars gas field, Persian Gulf: Geological journal, v. 44, no. 3, p. 341364.
Rogers, S. J., J. H. Fang, C. L. Karr, and D. A. Stanley, 1992, Determination of Lithology from Well Logs Using a Neural Network (1): AAPG bulletin, v. 76, no. 5, p. 731–739.
Serra, O., 1986, Fundamentals of well-log interpretation (v. 2), the interpretation of logging data: Pau, France, Elf-Aquitaine or Amsterdam: Elsevier.
Sharma, P., G. Mamgain, V. K. Bahuguna, and C. Lal, n.d., Improved Permeability Estimates in Carbonate Reservoirs Using Electrofacies Characterization: A Case Study of Mumbai High South.
Stinco, L. P., 2006, Core and log data integration. The key for determining electrofacies, in SPWLA 47th Annual Logging Symposium: Society of Petrophysicists and Well-Log Analysts.
Tavakoli, V., and A. Amini, 2006, Application of Multivariate Cluster Analysis in Logfacies Determination and Reservoir Zonation, Case Study of Marun Field, South of Iran: Journal of Science University of Teheran, v. 32, no. 2, p. 69–75.
Wolf, M., and J. Pelissier-Combescure, 1982, Faciolog-automatic electrofacies determination, in SPWLA 23rd Annual Logging Symposium: Society of Petrophysicists and Well-Log Analysts.
ZOU, C., S. TAO, H. Zhou, X. ZHANG, D. HE, C. ZHOU, L. WANG, X. WANG, F. LI, and R. ZHU, 2008, Genesis, classification, and evaluation method of diagenetic facies: Petroleum Exploration and Development, v. 35, no. 5, p. 526–540.