Mineral Chemistry and Melt Inclusions Study of Clinopyroxene Phenocrysts and its Application at Petrologic Interpretations and Mineralization: A case study of lamprophyre Dikes in Northwest of Iran

Authors

1 Geoloagy Department, Faculty of Earth Sciences, Shahid Beheshti University, Iran Geoscience Environment Toulouse, Paul-Sabatier University, France

2 Geoloagy Department, Faculty of Earth Sciences, Shahid Beheshti University, Iran

3 Geoloagy Department, Faculty of Science, Zanjan University, Iran

Abstract

There is a close temporal and spatial relationship between calc-alkaline lamprophyres and gold mineralization.  In Calc alkaline lamprophyre dykes in the Salavat mountain, northwest of Iran, silicate melt inclusions recognized as poly phase inclusions in clinopyroxene. They composed of glass, daughter minerals and volatile bubble. Melt inclusions compositionally are similar to those of host-clinopyroxene phenocrysts, which overlap with calc alkaline lamprophyres. Raman spectroscopy studies of shirinkiage bubble in melt inclusions show they are rich in volatile phase such as CO2. Combination of mineral chemistry data and melt inclusions indicate effect of fluids and its main role on metasomatism processes to generate parent magma of lamprophyres in the Salavate Mountain. Application of this study has significant importance to interpret related to upper mantle processes, evolution of alkaline magma and related mineralization.
 

Keywords


Aghazadeh. M., Castro. A., Badrzadeh. Z.,Vogt. K., 2011, Post-collisional polycyclic plutonism from the Zagros hinterland. The Shaivar-Dagh plutonic complex Alborz belt, Iran, Geological Magazine, Vol: 148, p: 980-1008.
Aghazadeh. M., Castro. A., Omrani. N.R., Emami. M.H., Moinvaziri. H., Badrzadeh, Z., 2010, The gabbro (shoshonitic)–monzonite–granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran, Journal of Asian Earth Sciences, Vol: 38, p: 199-219.
Aoki. K., Shiba. I., 1973, Pyroxenes from lherzolite inclusions of Itinomegata, Japan, Lithos, Vol: 6, p: 41–51.
Alberti. AA., Comin-Chiaramonti. P., Dibattistini. G., Nicoletti. M., Petrucciani. C., Siniqoi. S., 1976, Geochronology of the eastern Azarbaijan volcanic plateau (north- west Iran). Rendiconti della Societa Italiana di Mine et Petr, Vol: 32, p: 579-589.
Andersen. T., Neumann. E.R., 2001, Fluid inclusions in mantle xenoliths, in Fluid Inclusion Studies-Principles and Applications, edited by T. Andersen, M.L. Frezzotti and E. Burke, Lithos, Vol: 55, p: 301-320.
Aydin. F., 2003, Değirmendere Vadisi (Trabzon-Esiroğlu, KD-Türkiye) Volkanitlerinin Mineral Kimyası, Petrolojisi and Petrojenezi [Mineral Chemistry, Petrology and Petrogenesis of the Değirmendere Valley Volcanics (Trabzon-Esiroğlu, NE-Turkey)]. PhD Thesis, Karadeniz Technical University, Trabzon, Turkey.
Aydin. F., Karsli. O., Sadiklar. M.B., 2000, Petrologic significance of the complexly zoned clinopyroxenes in the volcanic rocks from Eastern Pontides (NE-Turkey), Beihefte zum European Journal of Mineralogy, Vol: 12, p: 5.
Azimzadeh. A. M.,Soltanmohammadi. A., Bakker. R. J., Rahgoshay M., 2013, Study of Silicate Melt Inclusions in Lamprophyre Dykes from Salavat Mountain, Azarbaijan Magmatic Plateau, NW IRAN. 22nd meeting of the European Current Research on Fluid Inclusions, Abstract book, p: 181-182.
Babakhani. A.R., Lesquyer. J.L., Rico. R., 1990, Geological map of Ahar quadrangle (scale 1:250,000). Geol Survey of Iran, Tehran, Iran.
Bergman. S.C., 1987, Lamproites and other potassium-rich igneous rocks A review of their occurrence,mineralogy and geochemistry,In Alkaline Igneous Rocks,(Eds.) Fitton, J.G and Upton, B.G.J.Geological Society Specia L Publication , No: 30, p: 103-190.
Bernard-Griffiths. J., Fourcade. S., Dupuy. C., 1991,Isotopic study (Sr, Nd, O and C) of lamprophyresandassociated dykes from Tamazert (Morocco): crustal contamination process and source characteristics, Earth Planet. Sci. Lett, Vol: 103, p: 190–199.
Castro. A., Aghazadeh. M., Badrzadeh. Z., Chichorro. M., 2013, Late Eocene–Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NWIran. An example of monzonite magma generation from a metasomatized mantle source, Lithos, Vol: 180-181, p :109-127.
Dawson. J.B., 1987, Metasomatized harzburgites in kimberlite and alkaline magmas: enriched restites and ‘flushed’ lherzolites, In: Menies, M.A., Hawkesworth, C.J. (eds), Mantle Metasomatism, Academic Press, London, p: 125–144.
De Vivo. B., Bodnar. R.J., 2003, Melt inclusions in volcanic systems : methods, applications and problems, Amsterdam , Elsevier, P: 258.
Dessai. A.G., Rock. N.M.S., Griffin. B.J., Gupta. D., 1990, Mineralogy and petrology of some xenolith bearing alkaline dykes associated with Deccan magmatism, south of Bombay, India. Eur. J. Miner, Vol: 2, p: 667-85.
Dobosi. G., Horvarth. I., 1988, High- and low-pressure cognate clinopyroxenes from alkali lamprophyres of the Velence and Buda mountains, Hungary, Neues Jahrbuch, Fur Mineralogie Abhandlungen, Vol: 158, p: 241–256.
Duggan, M. B. and Jaques, A. L., 1996, Mineralogy and geochemistry of Proterozoic shoshonotic lamprophyres from the Tennant Creek Inlier, Northern Territory. Aust, Journal of  Earth Science, Vol: 43, p: 269–278.
Frezzotti. M.L., Peccerillo. A., 2007, Diamond-bearing COHSfluids in the mantle beneath Hawaii, Earth and Planetary Science Letters, No: 262, p: 273–283
Grove. T.L., Gerlach. D.C., Sando. T.C., 1982, Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing, Contributions to Mineralogy and Petrology, No: 80, p: 160– 182.
Guilhaumou. N., Sautter. V., Dumas. P., 2005, Synchrotron FTIR microanalysis of volatiles in melt inclusions and exsolved particles in ultramafic deep-seated garnets, Chemical Geology, Vol: 223, No: 1–3, p: 82–92.
Hidas. K., Guzmics. T., Szabó. C., Kovács. I., Bodnar. R. J., Nédli.Z., Vaccari. L., Perucchi. A., 2010, Coexisting silicate melt inclusions and H2O-bearing, CO2-richfluid inclusions in mantle peridotite xenoliths from the Carpathian–Pannonian region (central Hungary), Chemical Geology, Vol: 274, p: 1–18.
Ishimaru, S., Arai, S., Shukuno, H., 2009, Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha volcano, Kamchatka, Earth and Planetary Science Letters, Vol: 284, p: 352-360.
Ishimaru, S., Arai, S., 2011, Possible high-PGE-Au silicate melt/aqueous fluid in mantle wedge: Inferred from Ni metasomatism in  Avacha peridotite xenolith, Goldschmidt 2011conference, No: 1087.
Karsli. O., Dokuz. A., Kaliwoda. M., Uysal. I., Aydin. F.,  Kandemir. R., Fehr. K, 2014, Geochemical fingerprints of Late Triassic calc-alkaline lamprophyres from the Eastern Pontides, NE Turkey: A key to understanding lamprophyre formation in a subduction-related environment, Lithos, Vol: 196-197, p: 181-197.
Leterrier. J., Maury. R.C., Thonon. P., Girard. D., Marchal. M., 1982, Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series, Earth and Planetary Science Letters, Vol: 59, p: 139–154.
Le Maitre. RW., 2002, Igneous Rock: A Classification and Glossory of Terms, second ed. Cambridge University Press, Cambridge, p: 236.
Lowenstern. J.B., 2003, Melt inclusions come of age: Volatiles, Volcanoes, and Sorby's Legacy, In: B. De Vivo and R.J. Bodnar (eds). Melt Inclusions in Volcanic Systems: Methods, Applications and Problems. Developments in Volcanology 5, Elsevier Press, Amsterdam, p: 1-22.
Metrich. N., Schiano. P., Clocchiatti. R., Maury. R.C., 1999, Transfer of sulfur in subduction settings: an example from Batan Island (Luzon volcanic arc, Philippines), Earth and Planetary Science Letters, Vol: 167, No: 1–2, p: 1–14.
Moayyed. M., Moazzen. M., Calagari. A.A., Jahangiri. A., Modjarrad. M., 2008, Geochemistry and petrogenesis of lamprophyric dykes and the associated rocks from Eslamy peninsula, NW Iran: Implication for deep mantle metasomatism, Chemie der Erde Geochem, Vol: 68, p: 141–154.
Morimoto. N., 1989, Nomenclature of pyroxenes, Canadian Mineralogy, Vol: 27, p: 143-156.
Nimis. P. ,1995, A clinopyroxene geobarometer for basaltic systems based on crystal structure modelling. Contributions to Mineralogy and Petrology, Vol: 121, p: 115–125.
Nimis. P., 1999, Clinopyroxene geobarometry of magmatic rocks: Part 2 structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems, Contributions to Mineralogy and Petrology, Vol: 135, p: 62–74.
Nimis. P, 2000, CpxBar-Excel version program, Available from http://dmp.unipd.it/Nimis/ researche.html.
Papike. J.J., Cameron. K.L., Baldwin. K., 1974, Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimates of ferric iron from microprobe data. Geology Society of America, Vol: 6, p: 1053–1054.
Putirka. K., Ryerson. F.J., Mikaelian. H., 2003, New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene+liquid equilibria. Am. Mineral, Vol: 88, p: 1542-1554.
Putirka. K.D., 2008, Thermometers  and barometers for volcanic systems.  In: Putirka. K.D.,  Tepley. F., (Eds.), Minerals, Inclusions, and Volcanic Processes: Reviews in Mineralogy and Geochemistry, Vol: 69, p: 61-120.
Rock. N.M.S., 1991, Lamprophyres, Thomson Litho Ltd, East Kilbride, p:285.
Rock, N.M.S., Groves, D., 1988, Do lamprophyres carry gold as well as diamonds?. Nature, Vol: 332, p: 253-255.
Rock. N.M.S., 1987, The nature and origin of lamprophyres: an overview. In: Fitton, J.G., Upton, B.G.J. (Eds.), Alkaline Igneous Rocks, Geological Society Special publications, Vol: 30, p: 191–226.
Roedder. E., 1965, Liquid CO2inclusions in olivine bearing nodules and phenocrysts from basalts, American Mineralogist, Vol: 50, No: 10, p: 1746–1782.
Roedder. E., 1984, Fluid inclusions. Reviews in Mineralogy, Vol: 12, p: 1–646.
Szabó. Cs., Bodnar. R.J., 1996, Changing magma ascent rates in the Nögrad-Gömör volcanic field, Northern Hungary/Southern Slovakia: evidence from CO2-rich fluid inclusions in metasomatized upper mantle xenoliths., Petrologiya, Vol: 4, No: 3, p: 240–249.
Shafaii Moghadam. H., Ghorbani. G., Zakikhedr. G., Fazlnia. N., Chiaradia. M., Eyuboglu. Y., Santosh. M., Galindo Francisco. C., Lopez Martinez. M., Gourgaud. A., Arai. S., 2013, Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: Implications for geodynamic evolution of the Turkish–Iranian High Plateau, Gondwana Research, Vol: 26, p: 1028-1050.
Shand, P., Gaskarth, J. W., Thirlwell, M. F. and Rock, N. M. S., 1994, Late Caledonian lamprophyre dyke swarms of Siuth-Eastern Scotland, Mineralogy and Petrology Vol: 51, p: 277–298.
Spera. F.J, 1984, Carbon  dioxide in petrogenesis III: role of volatiles in the ascent of alkaline magma with special reference to xenolith-bearing  mafic  lavas, Contributions to Mineralogy and Petrology, Vol: 88, p: 217-232.
Soltanmohammadi. A., Rahgoshay. M., Zadsaleh. M., 2013, Detection of silica-undersaturated igneous rocks by using remote sensing techniques: a case study in the Salavat Mountain, NW of Iran, 4th ISGC, abstract book, p: 135.
Soltanmohammad. A., Rahgoshay. M., Ceuleneer. G., Gregoire. M., Benoit. M., 2014, Metasomatism in the Subcontinental Lithospheric Mantle beneath Azarbayjan Magmatic Plateau, NW Iran: Evidence from potassic lamprophyres from the Salavat range, Goldschmidt 2014 , abstracts No: 2349.
Shaw. C.S.J., Eyzaguirre. J., 2000, Origin of megacrysts in the mafic alkaline lavas of the West Eifel volcanic field, Germany, Lithos, Vol: 50, p: 75–95.
Shimizu. N., 1981, Trace element incorporation into growing augite phenocrysts, Nature, Vol: 289, p: 575–577.
Simonetti. A., Shore. M., Bell. K., 1996, Diopside phenocrysts from nephelinite lavas, Napak Volcano, Eastern Uganda: Evidence for magma mixing, Canadian Mineralogist, Vol: 34, p: 411–421.
Sisson. T.W., Grove. T.L., 1993, Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism, Contributions to Mineralogy and Petrology, Vol: 113, p: 143–166.
Torabi. G., 2011, Middle Eocene volcanic shoshonites from western margin of Central-East Iranian Microcontinent (CEIM), a mark of previously subducted CEIM-confining oceanic crust, Journal Petrology, Vol: 19, p: 675-689.
Török. K., de Vivo. B., 1995, Fluid inclusions in upper mantle xenoliths from the Balaton Highland, Western Hungary. Acta Vulcanologica, Vol: 7, p: 277–284.
Toplis. M.J., Carro. M.R., 1995, An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems, Journal of Petrology, Vol: 36, p: 1137–1170.
Watson. E.B., Liang. Y., 1995, A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks, American Mineralogist, Vol: 80, p: 1179–1187.
Woolley. AR., Bergman. SC., Edgar. A., Lebas. MJ., Mitciiell. RH., Rock. NMS., Scott Smith. BH., 1996, Classification of lamprophyres, lamproites, kimberlites and the kalsilitic, melilitic, and leucitic rocks, Canadian Mineralogy, Vol: 34, p: 175-186.
Wyman. D., Kerrich, R., 1988, Lamprophyres a source of gold, Nature, Vol: 332, p: 209-210.