Groundwater Quality Assessment using Takagi-Sugeno-Kant Fuzzy Water Quality Index (TSKFWQI) Approach

Authors

Department of Geology, Faculty of Earth Sciences, Kharazmi University

Abstract

     In this study, the drinking groundwater quality of the Lenjanat plain, Iran, is classified based on Takagi-Sugeno-Kant Fuzzy Water Quality Index (TSKFWQI). In this research, physicochemical parameters including: As, Pb, Cr, Ni, Cu, NO3, Na, K, F, Cl, Ba, Ca, Mg, Fe, SO4 and TDS were used to calculate the drinking quality rank of water samples using TSKFWQI method. In this way 79 samples were analyzed for classification. Among  these ,  15.18%  of  the  samples  showed  excellent  water, 24.05%    of  the samples  was  good  quality,  34.17% of  the  samples  showed  medium  water category, 18.98% of the samples showed poor water  category  and  7.59%  have  poor  water quality. In TSKFWQI, the final rank of any sample is very much affected by toxic parameters. It means that, a sample with acceptable range of all parameters, except one toxic parameter, falls in the unacceptable rank.Water chemistry shows the presence of some toxic elements in the groundwater resources, TSKFWQI classification of water with regard to drinking purposes gives more reliable results.
 

Keywords


صابری. ا، رضایی. م، دشتی،م،1392،  ارزیابی کاربرد سیستم استنتاج فازی ممدانی در تحلیل کیفیت آب زیرزمینی، مطالعه موردی. آبخوان طبس، مهندسی آب و محیط زیست ایران، دوره1، شماره1، 34-25
رضایی.م، امیری.و.، 1392، ارزیابی تغییرات کیفی آب زیرزمینی دشت لنجانات با استفاده از تحلیل عاملی ترکیب شده با تئوری انتروپی اطلاعات، محیط ­شناسی، سال سی نهم، 44-33
نخعی.م، ودیعتی.م، 1391،  تجزیه و تحلیل فازی آب زیرزمینی استان تهران.فصلنامه زمین­شناسی ایران، سال6 ، شماره 23، 46-37
Altunkaynak. A., 2005, Water Consumption Prediction of Istanbul City by Using Fuzzy Logic Approach, Water Resources Management, 19: 641–654
Castellanoa.G., L., González., Santandera. J., Laraa. A., Torrensb. F., 2013, Classification of flavonoid compounds by using entropy of information theory, Photochemistry, 93:182-191
Chang. N., Chen. H.W., King. S. K., 2001, Identification of river water quality using the fuzzy synthetic evaluation approach, Journal of Environmental Management, 63:293-305.
Cude. C. O., 2001, Water quality index: a tool for evaluating water quality management effectiveness, Journal of Water Resource, Assoc, 37:125-137.
Dahiya. S, Datta. D., Kushwaha, H. S., 2005, A fuzzy synthetic evaluation approach for assessment of physico-chemical quality of groundwater for drinking purposes, Environmental Geology, 8 : 158-165.
Despande. A. W., Raj. D. V., Khanna. P., 1996 (a), Fuzzy description of river water quality, Paper for International Conference EUFIT
Despande. A. W., Raj. D. V., Khanna. P., 1996 (b), Agreement Index for water consumption, Paper for International Conference EUFIT.
Firat. M., Turan. M., Yurdusev. M. A., 2009, Comparative analysis of fuzzy for inference systems  for water consumption  time series prediction, Journal of Hydrology, 5 Vol. 374, pp. 235-241.
Hamed. G. H., Mahvia. A. H., Nabizadeha. R., Arabalibeikd. H., Yunesiana. M., Sowlatf. M. H., 2012, a novel approach in water quality assessment based on fuzzy logic, Journal of Environmental Management, 112(15): 87-95.
Karmakar. S., Mujumdar. P., 2006, Grey fuzzy optimization model for water quality management of a river system, Advances in Water Resources, 29, 1088-1105.
Korda. M., Asghari Moghaddam. A., 2014, spatial analysis of Ardabil plain aquifer potable groundwater using fuzzy logic, Journal of King Saud University Science, 26(2):129-140.
Lermontova. A., Yokoyamab. L., Lermontovc. M., Augusta Soares Machadod. M., 2009. River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil, Ecological Indicators, 9(6):1188-1197.
Liou. S., Lo. S., Wang. S. A., 2004, Generalized water quality index for Taiwan, Environmental Monitoring Assessment, 96:35-52.
Ocampo-Duquea. W., Osorioa. C., Piambaa. C., Schuhmacherb. M., Domingoc. J. L, 2013, Water quality analysis in rivers with non-parametric probability distributions and fuzzy inference systems: Application to the Cauca River, Colombia Environment International, 52:17-28
Piplani. R., Wetjens. D., 2007, Evaluation of entropy-based dispatching in flexible manufacturing systems, European Journal of Operational Research, 176, 317-331.
Saberi Nasr. A., Rezaei. M., Dashti. M., Groundwater contamination analysis using Fuzzy Water Quality index (FWQI): Yazd province, Iran., Journal of Geopersia 3 (1), 2013, P. 47-55 
Said. A., Stevens. D., Selke. G., 2004, an innovative index for evaluating water quality in streams, Environmental Management, 34:406-414.
Sargaonkar. A., Deshpande. V., 2003, Development of an Overall Index of Pollution for Surface Water Based on a General Classification Scheme in Indian Context, Environmental Monitoring and Assessment, 89(1):43-67.
Shen. G. Q., Lu. Y. T., Wang. M. N., Sun. Y. Q., 2005, Status and fuzzy comprehensive assessment of combined heavy metal and organo-chlorine pesticide pollution in the Taihu Lake region of China, Journal of Environmental Management, 76(4), 355-362.
Shuiabi. E., Thomson. V., Bhuiyan. N., 2005, Entropy as a measure of operational flexibility, European Journal of Operational Research, 165, 696-707.
Silvert. W., 2000, Fuzzy indices of environmental conditions, Ecological Modeling, 130:111-119.
Takagi. T., Sugeno. M., Fuzzy identification of systems and its applications to modeling and control, IEEE Transitional System., Man, Cyber, vol. 15, pp. 116–132, 1985.
Wang. H. Y., 2002, Assessment and prediction of overall environmental quality of Zhuzhou City, Hunan Province, China, Journal of Environmental Management, 66(3), 329-340.
Zou. Z. H., Yun. Y., Sun. J. N., 2006, Entropy method for determination of weight of evaluating in fuzzy synthetic evaluation for water quality assessment indicators, Journal of Environmental Sciences, 18(5), 1020-1023.