Evaluation of Uniaxial Compressive Strength Changes of Travertine Samples against Salt Crystallization: Using of a Decay Function Model

Authors

Department of Geology, Faculty of Basic Sciences, Tarbiat Modares University, Iran

Abstract

Uniaxial compressive strength is one of a major factor in choice of building stone especially when used as paving. Salt crystallization is one of the most important factors that influence the durability and strength of building stones. Mgnesium sulphate is one of destroyer salt in building stone. In this paper, fifteen travertine samples were selected and petrologic, physical and mechanical properties. these tests were used in order to assess their change of uniaxial compressive strength against salt crystallization in 14% solution of magnesium sulphate. Decay function model (Half-life and decay constant) were used to assess change of uniaxial compressive strength. Relationship between USC loss with effective porosity and Brazilian tensile strength assess with regression analyzed, also relationship between decay constant with effective porosity and BTS assess with regression analysis. Results show that UCS decrease with increment in effective porosity and decline in BTS, plus rate of loss in UCS was higher with salt re-crystallization pressures in layered stones than massive ones. The samples of higher 5% effective porosity have higher losses in UCS. Decay constant changes from 0.004 to 0.019 depending effective porosity, BTS and structure of samples.
 

Keywords


جمشیدی.ا.، نیکودل.م.ر.، حافظی­مقدس.ن.، 1387، مقایسه اثر تخریبی محلول­های سولفات سدیم و سولفات منیزیم روی نمونه­هایی از سنگ­های ساختمانی، مجموعه مقالات دوازدهمین همایش انجمن زمین­شناسی ایران، شرکت ملی مناطق نفت­خیز جنوب، اهواز.
جمشیدی.ا.، نیکودل.م.ر.، خامه­چیان.م.، ذلولی.ا.، 1391، ارزیابی دوام تراورتن قرمز آذرشهر در مقابل یخبندان و تبلور نمک با انجام آزمون­های آزمایشگاهی، مجموعه مقالات سی و یکمین گردهمایی علوم زمین،­ سازمان زمین­شناسی و اکتشافات معدنی کشور.
ذلولی.ا.، خامه­چیان.م.، نیکودل.م.ر.، جمشیدی.ا.، 1391، بررسی ترکیب شیمیایی سیال روی شاخص دوام شکفتگی سنگ تراورتن، دومین همایش انجمن علمی زمین شناسی، دانشگاه شهید بهشتی.
Akin.M., Özsan. A., 2011, Evaluation of the long-term durability of yellow travertine using accelerated  weathering tests, Bulletin of Engineering Geology and the Environment, vol:70, p:101-114.
Arnold.A., 1984, Determination of salts from monuments, Studies in conservation, vol:29, p:129-138
Benavente.D., Garcia del Cura.M.A., Bernabeu.A., Ordonez.S., 2001, Quantification of salt weathering in porous stones using experimental continuous partial immersion method, Engineering Geology, vol:59, p:313–25
AS/NZS4456., 1997,  Methods  of test for  masonry units and segmental  pavers method 10, Determining resistance to solt  attack method A for dimension stone.
ASTM C 88-90., 1997, Standard test method for soundness of aggregate by use of sodium sulfate or magnesium sulfate, Annu Book ASTM Stand4.2 37± 42.
Benavente.D., García del Cura.M.A., Fort.R., Ordóñez.S., 2004, Durability estimation of porous building stones from pore structure and strength, Engineering Geology, vol:74, p:113-127.
Benavente.D., Martinez.J., Cueto.N., Cura.M.A., 2007, Salt weathering in dual-porosity building dolostones, Engineering Geology, vol:94, p:215-226.
Chafetz.H.S., Folk.R.L., 1984, Travertines depositional morphology and the bacterially constructed constituents, Journal of    Sedimentary Petrology, vol:54, No: 1, p:289–316.
Chin.I.R., 2007, Travertine  successful and unsuccessful performance preconceived notions and mischaracterizations. Journal of ASTM International, vol:4, No:7, p:93–101.
Cultrone.G., Luque.A., Sebastián.E., 2012, Petrophysical and durability tests on sedimentary stones to evaluate their quality as building materials, Quarterly Journal of Engineering Geology and Hydrogeology, vol:45, p:415-422.
Doehhne.E., 1994, In situ dynamics of sodium sulfate hydration and dehydration in stone pores: Observations at high magnification using the environmental scanning electron microscope, The conservation of monuments in the Mediterrane Basin, Venice, p:143-150.
Doehne.E., Pinchin.S., 2008, Time-lapse macro-imaging in the field: monitoring rapid flaking of magnesian limestone. In: Lukaszewicz J, Niemcewicz P (eds) Proceedings of the 11th international congress on deterioration and conservation of stone. Torun Nicolaus Copernicus University Press, vol:1, pp:365–372.
EN 12370, 1999, Natural stone test methods, Determination of resistance to salt crystallization.
Fookes.P.G., Gourley.C.S., Ohikere.C., 1988, Rock weathering in engineering time, Quarterly Journal of Engineering Geology, vol:21, p:33–57.
Dreesen.R., Dusar.M., 2004, Historical building stones in the province of Limburg (NE Belgium): role of petrography in provenance and durability assessment, Materials Characterization, vol:53, p:273– 287.
Jefferson.D., 1993, Building stone: the geological dimension, Quarterly Journal of Engineering Geology and Hydrogeology, vol:26, p:305-319.
ISRM., 2007, The complete ISRM suggested methods for rock characterization, testing and monitoring, In: Ulusay R, Hudson JA (eds), Suggested methods prepared by the commission on testing methods.
ISRM., 1981, Rock characterization testing and monitoring, ISRM suggested methods. In: Brown ET (ed), Pergamon Press, Oxford.
Lopez-Arce.P., Garcia-Guinea.J., Benavente.D., Tormo.L., Doehne.E., 2008, Deterioration of dolostone by magnesium sulfate salt: an example of incompatible building materials at Bonaval Monastery, Spain, Constr Build Mater, vol:23, p:846–855.
Ludovico-Marques.M., Carlos.C., Graça V., 2012, Modelling the compressive mechanical behaviour of granite and sandstone historical building stones, Construction and Building Materials, vol:28, No:1, p:372-381.
Mutluturk.M., Altidag.R., Turk.G., 2004, A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing-thawing and heating-cooling, Int J Rock Mech & Min Sci, vol:41, p:237-244.
RILEM., 1980, Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods, Materials and Structures, vol:13, p:175–253.
Ruedrich.J., Siegesmund.S., 2007, Salt and ice crystallisation in porous sandstones, Environmental Geology, vol:52, p:225-249.
Scherer.G., 1999, Crystallization in pores, Cement and Concrete Research, vol:29, p:1347-1358.
Ruiz-Agudo.E., Mees.F., Jacob.P., Rodriguez-Navarro.C., 2007, The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environmental Geology, vol:52, p:269-281.
 
 
 
 
Scherer.G,. 1999, Crystallization in pores, Cement and Concrete Research, vol:29, p:1347-1358.
  Schneider.C., Gommeaux.M., Fronteau.G., Oguchi.C.T., Eyssautier.S., Kartheuser.B., 2011, A comparison of the properties and salt weathering susceptibility of natural and reconstituted stones of the Orval Abbey (Belgium), Environmental Earth Scinces, vol:63, p:1447–1461.
Ulusoy.M., 2007,  Different igneous masonry blocks and salt crystal weathering rates in the architecture of historical city of Konya, Building and Environment, vol:42, p:3014-3024.
Urosevic.M., Pardo.E., Cardell.C., 2010, Rough and polished travertine building stone decay evaluated by a marine aerosol ageing test, Construction and Building Materials, vol:24, p: 1438-1448.
Yavuz.A.B., 2006, Deterioration of the volcanic kerb and pavement stones in a humid environment in the city centre of Izmir, Turkey, Environmental Geology, vol:51, p:211-227.
  Yavuz.A.B., Topal.T., 2007, Thermal and salt crystallization effects on marble deterioration: Examples from Western Anatolia, Turkey, Engineering Geology, vol:90, p:30-40.