Degradation of confining pressure effects on elastic wave velocities of rocks, A case study: Sarvak formation

Authors

Geology Department, Ferdowsi University of Mashhad

Abstract

The Kangan Formation with Triassic age is the largest gas reservoirs in the Middle East and the world. This formation in Lavan field, consists of 200 meters of carbonate sequences (limestone, dolomitic limestone and dolomite), associated with anhydrite layers, with 164 meters of core samples. Based on microscopic and macroscopic studies, 11 facies in 4 facies belts, tidal flat, lagoon, shoal and open marine have been identified. Based on identified microfacies, the sedimentry environment of this formation can be introduced as a homoclinal carbonate ramp system. Diagenetic processes in the Kangan Formation that has  the most influence on reservoir quality are: mechanical and chemical compaction, dissolution, dolomitization, isopachous fiberous cement, equant cement, drusy cement, blocky cement ,vein cement, poikilotopic cement, anhydrite cement and fractures. Compaction processes and different types of cements reduced reservior quality and dissolution, dolomitization and fractures increased reservior quality.Observed porosity in the Kangan Formation is: intergranular , intragranular, moldic, fenestral, intercrystaline, fracture, vuggy and channel porosities. The Kangan Formation in Lavan field is divided into two zones, K1 and K2. K2 is divided into three sub-zones, K2a, K2b and K2c and  K1 is divided into four sub-zones, K1a, K1b, K1c and K1d.  The K1d sub-zone, due to granular dolomitic facies (especially ooid grainstone ) and a significant amount of moldic , intergranular, intercrystaline and  fracture porosities, has the highest  reservoir quality in this sequence.
 

Keywords


فهیمی‌فر. ا.، سروش. ح.، 1389، آزمایش‌های مکانیک سنگ مبانی نظری و استانداردها (آزمون‌های آزمایشگاهی)، انتشارات دانشگاه صنعتی امیرکبیر.
نجیبی. ع.، آصف. م.، اجل‌لوئیان. ر.، صفیان. غ.، 1390، تخمین ویژگی های مکانیکی سنگ‌آهک با استفاده از داده‌های پتروفیزیکی، نشریه زمین‌شناسی مهندسی، شماره 1، ص 1159 – 1178.
Ameen, M. S., Smart, B. G. D., Somerville, J. M. C., Hammilton, S., Naji, N. A., 2009, Prediction rock mechanical properties of carbonated from wireline logs (A case study: Arab-D reservoir, Ghavar field, Saudi Arabia): International Jourmal Rock Mechanics and Mining Sciences. 26, p: 430-444.
Anselmetti, F. S., Eberli, G. P., 1993, Controls on sonic velocity in Carbonates: PAGEOPH, 141, 2/3/4, p: 287-323.
Asef, M. R., Najibi, A. R., 2013, The effect of confining pressure on elastic wave velocities and dynamic to static Young’s modulus ratio: Geophysics, 78, (3), p: D135-D142.
Birch, F., 1960, The velocity of compressional waves in rocks to 10 kilobar: Part 1: Journal of Geophysical Research, 65, p: 1083-1102.
Brereton, N. R., Chroston, P. N., Evans, C. J., Hudson, J. A., Whitmarsh, R. B., 1992, Anelastic strain recovery and elastic properties of oceanic Basaltic rocks: in Proceedings of the Ocean Drilling Program, Scientific Results (123).
Christensen, N. I., 1974, Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars: Journal of Geophysical Research, 79, p: 407-412.
Fjaer, E., Holt, R. M., Horsrud, P., Raaen, A. M., Risnes, R., 2008, Petroleum related rock mechanics, Amsterdam, Elsevier
Ji, S., Wang, Q., Marcotte, D., Salisbury, M. H., Xu, Z., 2007, P wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure: Journal of Geophysical Research, 112, B09204.
Lacy, L. L., 1997, Dynamic rock mechanics testing for optimized fracture designs: SPE paper 38716.
Lama, R. D., Vutukuri, V. S., 1978, Handbook on mechanical properties of rocks: Clausthal Germany, Trans Tech Publications.
Mavko, G., Mukerji, T., Dvorkin, J., 2009, The rock physics handbook: Toolsfor seismic analysis in porous media: Cambridge University Press.
Ohen, H. A., 2003, Calibrated wireline mechanical rock properties method for predicting and preventing wellbore collapse and sanding: SPE paper 82236.
Pervukhina, M., Gurevich, B., Dewhurst, D. N., Siggins, A. F., 2010, Applicability of velocity–stress relationships based on the dua lporosity concept to isotropic porous rocks: Geophysical Journal International, 181, p: 1473-1479.
Wang, Q., Ji, S., Salisbury, M. H., Xia, B., Pan, M., Xu, Z., 2005a, Pressure dependence and anisotropy of P-wave velocities in ultrahigh-pressure metamorphic rocks from the Dabie–Sulu orogenic belt (China): Implications for seismic properties of subducted slabs and origin of mantle reflections: Tectonophysics, p: 398, p: 76-99.
Wang, Q., Ji, S., Salisbury, M. H., Xia, B., Pan, M., Xu, Z., 2005b, Shear wave properties and Poisson’s ratios of ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt, China: Implications for crustal composition: Journalof Geophysical Research, 110, B08208.
Wepfer, W. W., Christensen, N. I., 1991, A seismic velocity - confining pressure relation, with application: International Jourmal Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 28, p: 451-456.
Zimmerman, R. W., 1991, Compressibility of Sandstones: Amsterdam, Elsevier.