Estimate the Compression index, Swelling and Preloading Coefficient in the Presence of Special Restorative of Clay - Gypsum soils

Authors

Hydraulic structures department, Shahid Chamran University (SCU), Ahwaz, Iran

Abstract

      Water withdrawal is done after a long time in the fine soil (clay) due to low permeability and water absorption of clay minerals then estimated consolidation settlement is necessary. Obviously, if it does not predict, then amount of settlement causes irreparable damages. Soil potential should determine the amount and type of settlement before implementing any project. One method of consolidation settlement calculation is using coefficients which are obtained from consolidation tests. These coefficients include compression index, swelling index, preload index. Therefore, in this study, special concrete which restorative used for stabilization of gypsum soil. special concrete restorative material is based on cement. special concrete restorative is  added with rates of 1, 2, 3, 5 and 7 to the soil for soil stabilization. Soil classification testing, specific gravity test, compaction, determination of the Atterberg limits and consolidation were performed on controled and improved soils according to the existing standards. Chemical analysis was also done to determine the values ​​of the elements in the soil. After the geotechnical testing and characterization of physical and chemical analysis of soil samples from the controlled and improved, it was found that Cc is reduced at 85% compaction and for all rates when special concrete restorative was added. Except rates of 1 and 5 of the special concrete restorative additives, Cc has dropped for the 95% compression. Also, except for 2 and 5 percentages of the special concrete restorative additives, Cc has reduced for the 100% compression. Cs has reduced 76% at the best state of 85% compaction. Cs has reduced 63% at the best state of 95% compaction. Also, Cs has not change at 100% compaction.
 

Keywords


احدیان، ج. (1383) برآورد شاخص شاخص فشردگی، Cc  با استفاده از خصوصیات فیزیکی در منطقه در منطقه اهواز . پایان نامه کارشناسی ارشد. دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز..
تاتلاری. س.، (1375)، "بررسی رفتار خاک­های گچی در مجاورت سازه­های آبی"، پایان­نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه تهران.
دریایی، م.،کاشفی پور، م.، احدیان، ج.، قبادیان، ر.( 1388). مدلسازی شاخص فشردگی خاکهای ریزدانه به کمک شبکه ی عصبی مصنوعی و مقایسه با سایر روابط تجربی. مجله ی آب و خاک جلد 24 شماره 4، صص 667-659.
سهرابی. س.، (1390)، " بررسی تأثیر مواد پلیمری بر خصوصیات مکانیکی خاک­های رمبنده به­کار رفته در دایک­ها و سواحل رودخانه"، پایان­نامه کارشناسی ارشد، دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز.
علیزاده، م.ر.ب.، (1388). "پایدارسازی خاک رمبنده با استفاده از تکنولوژی تزریق-مطالعه موردی راه آهن سمنان-دامغان." پایان نامه کارشناسی ارشد عمران، دانشگاه بین المللی امام خمینی قزوین.
قبادی، م.ح.، حیدری، م.، رفیعی، ب.، موسوی، س.، آریافر، ن.، (1392). "مطالعه خصوصیات ژئوتکنیکی ماسه سنگ­های سازند آغاجری در شرق و جنوب شرق اهواز". مجله زمین شناسی کاربردی پیشرفته، شماره 8 (1392).
کرباسی راوری، م.، (1380)، "بررسی روش­های تثبیت خاک با استفاده از آهک و سیمان"، همایش ملی مدیریت اراضی – فرسایش خاک و توسعه پایدار. اراک.
مجرد، ر. (1375). " تسلیح خاک رس بوسیله الیاف مصنوعی"، پایان نامه کارشناسی ارشد، دانشگاه آزاد اراک.
منصوری­کیا. م.، محمدعلی­زاده. ر.، (1386)، " ترمیم ژئوتکنیکی یک کانال ساخته شده در خاک مسئله­دار"، دومین کنفرانس ملی تجربه­های ساخت تاسیسات آبی و شبکه­های آبیاری و زهکشی. دانشگاه تهران.
ASTM (1958). Book of ASTM standards. Standard No. D 423-59T, “Tentative Method of test for liquid limit of soils,”  part 4, p. 1132.
16
 
ASTM (1958). Book of ASTM standards. Standard No. D 424-59, “Standard Method of test for Plastic limit and Plasticity Index of soils,”  part 4, p. 1137.
ASTM (2004). Annual Book of ASTM Standards, Vol. 04.08, Soil and Rock (I). Standard No. D 427-98, “Standard Test Method for Shrinkage Factors of Soils by the Mercury Method,” West Conshohocken, PA, pp. 22–25.
ASTM (2004). Annual Book of ASTM Standards, Vol. 04.08, Soil and Rock (I). Standard No. D 854-02, “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer,” West Conshohocken, PA, pp. 96–102.
ASTM (2004). Annual Book of ASTM Standards, Vol. 04.08, Soil and Rock (I). Standard No. D 698-00, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort,” West Conshohocken, PA, pp. 81–91.
ASTM (2004). Annual Book of ASTM Standards, Vol. 04.08, Concrete and Concrete Aggregates. Standard No. C928-05, "Standard Specification for Packaged, Dry, Rapid-Hardening Cementitious Materials for Concrete Repairs,"  West Conshohocken, PA 19428-2959, United States.
ASTM (2004). Annual Book of ASTM Standards, Vol. 04.08, Concrete and Concrete Aggregates. Standard No.C1583-04, "Standard Test Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-off Method)," West Conshohocken, PA 19428-2959, United States.  
Cavalieri,K.,M.,V.,Arvidsson,J.,Piers da Silva,A.,Keller.T.2008. Determination of pre-compression stress from un-axial compression tests. Soil & Tillage Research Vol. 98, pp.17–26.
 Chai, J., Sheng, D., Carter, J. P. and Zhu, H., (2012). "Coefficient of consolidation from non-standard piezocone dissipation curves.Journal of Computers and Geotechnics, Vol.41, pp:13-22.               
 Horpibulsuk. S., Chinkulkijniwat. A., Cholphatsorn. A., Suebsuk. J., Liu. M. D., (2012) , "Consolidation behavior of soil–cement column improved ground", Computers and Geotechnics,  43.
Nagaraj, T., and Murty B.R.S.1985.Predication of the predication of the pre-consolidation pressure and recompression index of soil. Geotechnical Testing Journal. Vol.8.no.4. 199-202.
Nishida, Y. 1956. Abrief note on compression index of soil. Journal of the Soil Mechanic and Foundation Engineering Division. ASCE. Vol. 82 (SM3): pp. 1027-1-1027-14.
Oswald, R.H. 1980.Universal compression index equation. Journal of Geotechnical Engineering Division.ASCE.106:1179-1199.
Park. H. and Lee. S. R., (2011), "Evaluation of the compression index of soils using an artificial neural network", Computers and Geotechnics, Vol.38, pp. 472–481.
Park,J.H.,and Koumoto, t. 2004. New compression index equation. Journal of Geotechnical and Geoenvironmental Engineering. ASCE. 130(2) pp.223-226.
Ple, O., Le, (2012). "Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay”. Geotextiles and Geo-membranes, 32.
Rendon-Herrero, O. 1980. Universal compression index equation. Journal of Geotechnical Engineering Division.ASCE.Vol. 106(11) pp.1179-1200.
Saffih-hdadi,K., Defossez,P., Richard,G., Cui,Y.J., Tang,A.M., Chaplain.V. (2009). A method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density. Soil & Tillage Research.Vol.105,pp.96-103.

 Shipton, B., Coop, M.R., (2012). "On the compression behaviour of reconstituted soils", Soils and Foundations, Vol. 52, pp. 668-681.

Sketmpton, A. W. 1944.Notes on the compressibility of clays. Quarterly Journal of the Geotechnical Society of London. Vol.100.pp.110-135.
 Terzaghi, K. (1925). "Erdbaumechanik ouf boden physikalischer Grundlage”. Deuticke, Vienna, Austria.

Tsutsumi, A., Tanaka, H., (2012). " Combined effects of strain rate and temperature on consolidation behavior of clayey soils", Soils and Foundations, Vol. 52, pp. 207-215.

 Wang. S.Y., Chan, D.H. and Lam, K.C, (2011). "Laboratory study of static and dynamic compaction grouting in triaxial condition", journal of Geomechanics and Geoengineering, Vol. 6, No. 1, pp. 9-19.
 Yilmaz. I., Civelekoglu. B., (2009). "Gypsum: An additive for stabilization of swelling clay soils", Applied Clay Science, 44, pp. 166–172.
 Zhang. L., Solis. R., (2008). "Fly-Ash-stabilized gypsiferous soil as an embankment material", Liu, Deng and Chu (eds) © 2008 Science Press Beijing and Springer-Verlag GmbH Berlin Heidelberg, Geotechnical Engineering for Disaster Mitigation and Rehabilitation.