استفاده از نمودارهای تصویرگر OBMI و UBI در تحلیل ساختار و شکستگی های مخزن آسماری و مقایسه آن با نمودار انحراف سرعت در یکی از میادین جنوب غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو کارشناسی ارشد زمین شناسی نفت دانشگاه شهید چمران اهواز

2 دانشیار گروه زمین شناسی دانشگاه شهید چمران اهواز

3 استاد ایران دانشگاه شهید چمران اهواز

4 شرکت ملی مناطق نفت خیز جنوب اداره مطالعات

چکیده

در مطالعه ساختمانهای نفتی ، شکست سنگهای مخلوط در مراحل تولید و توسعه میدان بسیار مهم و ضروری است. به کار نرمافزارها مخلوط شده در تحقق این مشکل به زمین شناسان نفتی کمک شایانی مینماید. هدف از این تحقیق ، بررسی سیستماتیک شکستگی مخزن آسماری در یکی از میادین نفتی ایران و گسترش این شکستگی در مخلوط مذکور با استفاده از تجزیه و تحلیل فایل های تصویری OBMI و UBI و تأثیر این شکستگی ها در تخریب و تراوئی مخلوط از طریق محاسبه و رسم نمودار آن است که دارای فشار خون است. . نتایج بدست آمده از این تحقیق نشان می دهد که استفاده از تفسیر نمودار OBMI و UBI با وجود داشتن دقت کافی در FMI دارند ، ابزار قدرتمند برای شناسایی شکستگی ها و شیب ساخت در مخازنی است که از گل پایه استفاده می شود. در این مطالعه نتایج حاصل از تفسیر FMI در یکی از میدانهای چاههای مورد نظر برای مطبقت به دست آمده است. به طور کلی تولید شده در مخزن آسماری در این میدان ، تلفات از شکستگی و سنگ ماتریکس است. در این مخزن شکستگیها و زونهای متخلخل تأثیر فراوان بر خصوصیات سنگ مخلوط شده است به نحوی که دو الگوی کلی شکستگی تکتونیکی مرتبط با چین خوردگی از نوع طولی و مورب و همچنین انواع شکستگی مرتبط با گسلخوردگی در این مخزن دیده می شود. در میان آنها الگوی طولی ، غالب ترین نوع پذیرفته شده و شکست شکستگی ها را تشکیل می دهد. امتداد آنها N45-90W بوده و بیشتر در زونهای بالایی آسماری مشاهده میشوند که در رابطه با چینخوردگی حاصل از گسلش در زون برشی بالارود و در اثر عملکرد گسل معکوس بالارود میباشند.
 

کلیدواژه‌ها


رضائی، م. ر.، و چهرازی، ع.، 1385، اصول برداشت و تفسیر نگاره­های چاه­پیمایی، انتشارات دانشگاه تهران، 699 صفحه.
سحابی، ف.، 1390. مطالعه سازوکار گسل بالارود در شمال فروبار دزفول و نقش آن در ویژگی­های ساختار منطقه، حوضه رسوبی زاگرس، جنوب غرب ایران. ششمین کنفرانس بین المللی زلزله شناسی و مهندسی زلزله.
ساعدی، ق.، 1388. تحلیل شکستگی­های مخزن آسماری میدان نفتی لالی با استفاده از نمودار تصویرگر FMI، پایان­نامه کارشناسی ارشد زمین­شناسی گرایش نفت، دانشگاه چمران اهواز، 152صفحه.
عقلی، ق.، 1392، تحلیل شکستگی­های مخزن آسماری میدان نفتی بالارود با استفاده از نمودار­های تصویرگر، پایان­نامه کارشناسی ارشد، رشته زمین­شناسی گرایش نفت، دانشگاه شهید چمران اهواز، دانشکده علوم زمین،162 صفحه.
 
Ahmadhadi, F., Lacombe, O., & Daniel, J. (2007). Early Reactivation of Basement Faults in Central Zagros (SW Iran): Evidence from Pre-folding Fracture Populations in Asmari Formation and Lower Tertiary Paleogeography. In O. Lacombe, F. Roure, J. Lavé, & J. Vergés (Eds.), Thrust Belts and Foreland Basins SE - 11 (pp. 205–228). Springer Berlin Heidelberg. doi:10.1007/978-3-540-69426-7_11
Alavi, M. (2007). Structures of the Zagros fold-thrust belt in Iran. American Journal of Science , 307 (9 ), 1064–1095. doi:10.2475/09.2007.02
Anselmetti,F.S. and Eberli G.P.,1999,:The Velocity Deviation Log; A Tool to Predict Pore Type Permeability Trends in Cabonate Drill Holes From Sonics And Porosity or Density Logs,AAPG Bulletin,Volume 83 ,No.3,pp.450-466
Darling, T. (2005). Well Logging and Formation Evaluation (p. 336). Elsevier Science. Retrieved from http://books.google.com/books?id=vKdIGNAE8JYC
Fossen, H. (2010). Structural Geology (p. 463). Cambridge University Press.
Gholipour, A. M. (1998). Patterns and structural positions of productive fractures in the Asmari Reservoirs, Southwest Iran. Journal of Canadian Petroleum Technology, 37(1), 44–50. doi:10.2118/98-01-07
Kamel, M.H., and Mohamed, M.M., 2006, Effective porosity determination in clean/shaly formations from acoustic logs with applications, J. Petrol. Sci. Engin., v 267–274.
Khoshbakht, F., Memarian, H., & Mohammadnia, M. (2009). Comparison of Asmari, Pabdeh and Gurpi formation’s fractures, derived from image log. Journal of Petroleum Science and Engineering, 67(1-2), 65–74. doi:10.1016/j.petrol.2009.02.011
Martinez L.P, Hughs, G.R and Wiggins M.L., 2002: Identification and Characterization of Naturally Fractured Reservoirs Using Conventional Well Logs. The University of Oklahoma, 23p.
McQuillan, H. (1973). Small-scale fracture density in Asmari formation of southwest Iran and its relation to bed thickness and structural setting. AAPG Bulletin, 57, 2367–2385.
McQuillan, H. (1974). Fracture patterns on Kuh-e Asmari Anticline, Southwest Iran. AAPG Bulletin, 58(2), 236–246. Retrieved from http://aapgbull.geoscienceworld.org/content/58/2/236.abstract
Mohebbi, A., Haghighi, M., & Sahimi, M. (2007). Conventional logs for fracture detection and characterization in one of the Iranian field. In International Petroleum Technology Conference, 4-6 December, Dubai, U.A.E. Dubai: International Petroleum Technology Conference. doi:10.2523/11186-MS
Nelson R.A. 2001, Geologic Analysis of Nayurally Fracture Reservior: Integeration is the Key of Optimazation, Distinguished author Series, 52-54, SPE 56010.
Nie, X., Zou, C., Pan, L., Huang, Z., & Liu, D. (2013). Fracture analysis and determination of in-situ stress direction from resistivity and acoustic image logs and core data in the Wenchuan Earthquake Fault Scientific Drilling Borehole-2 (50–1370m). Tectonophysics, 593, 161–171. doi:10.1016/j.tecto.2013.03.005
Rajabi, M., Sherkati, S., Bohloli, B., & Tingay, M. (2010). Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran. Tectonophysics, 492(1-4), 192–200. doi:10.1016/j.tecto.2010.06.014
Rezaie, A. H., & Nogole-Sadat, M. A. (2004). Fracture Modeling in Asmari Reservoir of Rag-e Sefid Oil-Field by using Multiwell Image Log (FMS/FMI). Iranian International Journal of Science, 5(1), 107–121.
Roehl, P. O., & Choquette, P. W. (1985). Carbonate Petroleum Reservoirs (p. 622). Springer-Verlag. Retrieved from http://books.google.com/books?id=SnohAAAAMAAJ
Schlumberger. (1994). FMI Fullbore Formation MicroImager. Houston: Schlumberger Educational Services.
Schlumberger. (2003). Using borehole imagery to reveal key reservoir features. In Reservoir Optimization Conference. Tehran, Iran.
Schlumberger. (2005). GeoFrame 4.2, BorView User’s Guide. Schlumberger Ltd.
Serra, O. (1989). Formation MicroScanner image interpretation (p. 117). Schlumberger Educational Services. Retrieved from http://books.google.com/books?id=G_U9twAACAAJ
Serra, O., & Serra, L. (2004). Well Logging: Data Acquisition and Applications (p. 674). Editions Technip. Retrieved from http://books.google.com/books?id=iAacQAAACAAJ
Stearns, D. W. (1968). Fracture as a Mechanism of Flow in Naturally Deformed Layered Rock. In A. J. Baer & D. K. Norris (Eds.), Kink Bands and Brittle Deformation. Geological Survey of Canada.
Thompson, L. B. (2000). Fractured Reservoirs: Integration Is the Key to Optimization. Journal of Petroleum Technology, 52(2), 52–54. doi:10.2118/56010-JPT
Tingay, M., Reinecker, J., & Müller, B. (2008). Borehole breakout and drilling-induced fracture analysis from image logs. World Stress Map Project. Retrieved from www.world-stress-map.org