Mineralogical and Geochemical Characteristics of Kojanagh Kaolinite and Alunite Deposits, Northwest of Meshkinshahr, Ardebil Province.

Authors

Geology Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran

Abstract

      Kaolinite and alunite deposits at Kojanagh are located in ~18 km northwest of Meshkinshahr, Ardebil province. Field and microscopic studies show that these deposits are the alteration products of Eocene volcanic rocks with andesitic to trachy-andesitic compositions. These deposits lie on the Ahar-Jolfa (Arasbaran) alteration axis. The alteration zones at Kojanagh are principally argillic (kaolinite), advanced argillic (alunite+ kaolinite), and silicified (quartz + cristobalite) that have a lenticular planar expression. According to the mineralogical data, the main rock-forming minerals in these deposits are kaolinite, alunite, quartz, and cristobalite accompanied by minor amounts of hematite, montmorillonite, anatase, and rutile. Based upon geochemical indicators like (Ti+Fe), (Cr+Nb), (Ba+Sr), and (Ce+Y+La) along with mobility degree of REEs in altered rocks relative to primary trachy-andesitic rocks, it seems that the hypogene rather than supergene hydrothermal solutions played more effective role in evolution of these deposits. The obtained geochemical data indicate that the mobility degree and distribution of major, minor, trace, and rare earth elements during kaolinization and alunitization processes were functioned by factors such as temperature and pH variations of altering solutions, adsorption, scavenging and concentration by metallic oxides, and existing in resistant mineral phases. Except Si and Al, the major elements show depletion related to fresh parent rocks toward siliceous alteration zone. The presence of K and Na in alunite structure caused their increase in alunite alteration zone. Large ion lithophile elements (LILE) are depleted during alteration. LREEs relative to HREEs in kaolinite and alunite samples display enrichment. Field and mineralogical evidences such as presence of alunite and native sulfur in the studied samples reveal that epithermal acid sulfate solutions were the main agent for progression of kaolinitization and alunitization processes during the evolution of Kojanagh deposits. Camparison of Kojanagh kaolinite deposit with some of other similar types from Iran showed that Kojanagh kaolin in view of geological characteristics best matches Zonooz and Ghalandar deposits in East-Azarbaidjan. Since such epithermal enviroments are accompanied with mineralization of precious metals like Au, therefore further investigations are well justified in this area.
 

Keywords


اروجی، ح.، 1391. بررسی کانی شناسی و ژئوشیمی نهشته­های کائولن و پرلیت در منطقه کوجَنَق، شمالغرب مشکین شهر، استان اردبیل. پایان نامه کارشناسی ارشد. گروه زمین شناسی دانشگاه تبریز، 118 صفحه.
اسدی، ف.، ابراری، م.، .1388. بررسی شرایط تشکیل کانسار کائولن پیرکوه جلیسه گیلان و تعیین خصوصیات کاربردی آن در جهت مصرف در صنایع پرسلان. فصلنامه علمی پژوهشی زمین و منابع واحد لاهیجان، سال دوم، شماره اول.
باباخانی، ع.،  خان ناظر، ح.، 1370. نقشه زمین شناسی لاهرود به مقیاس 1:100000 ل. سازمان زمین شناسی و اکتشافات معدنی کشور.
حسین پور، ح.، 1391. بررسی کانی شناسی و ژئوشیمی نهشته­های کائولن در منطقه قلندر اهر، استان آذربایجان شرقی. پایان نامه کارشناسی ارشد. گروه زمین شناسی دانشگاه تبریز، 110 صفحه.
حکمی، ح.، سپاهی، ع. ا.، برزویی، ک.، 1391. پتروگرافی و زمین شیمی سنگ­های مافیک و حد واسط جنوب مجموعه نفوذی الوند، منطقه آرتیمان (شمال تویسرکان). مجله زمین شناسی کاربردی پیشرفته. تابستان 91، شماره 4، جلد 1، صفحه 30تا 46.
قربانی، م.، 1390. ماگماتیسم، دگرسانی و ارتباط آن ها با کانی سازی در محور اهر – جلفا ( ارسباران)، مجله علوم پایه دانشگاه آزاد اسلامی (JSIAU)، شماره 81.
نبوی، م، ح.، 1355. دیباچه­ای بر زمین شناسی ایران، سازمان زمین شناسی کشور، 109 صفحه
مهدوی، ا.،  امینی فضل، ع.، 1367. نقشه  زمین شناسی اهر به مقیاس1:250000. سازمان زمین شناسی و اکتشافات معدنی کشور.
علیپور، و.، عابدینی، ع.، 1390. رفتار عناصر اصلی، فرعی و جزئی شامل عناصر نادر خاکی در طی فرایندهای کائولینیتی شدن در کانسار زنوز، شمالشرق مرند، استان آذربایجان شرقی. مجله زمین شناسی اقتصادی، شماره 2 ، جلد 3، صفحه 231 تا 249.
معصومی، ر.، 1389. بررسی کانی شناسی و ژئوشیمی ذخیره کائولن کجل، شمالغرب هشتجین، استان اردبیل. پایان نامه کارشناسی ارشد، دانشگاه تبریز، 100 صفحه.
Arslan, M., Kadir, S., Abdioglu, E., Kolayli, H., 2007. Origin and formation of Kaolin Minerals in saplolite of Tertiary alkalin volcanic rocks. Eastern pontides, NE Turkey. Clay Minerals 41,  597-617.
Aiuoppa, A., Allard, P., Alessandro, W., Michel, A., Parello, F., Treuil, M., Valeza, M., 2000. Mobility and fluxes of major elements, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochimical et cosmochimica Acta 64, 1827-1841.
Boynton, W. V., 1984. Geochemistry of rare earth elements: Meteorite studies In: Henderson. P., (ed) ., Rare Erath Elements Geochemistry. Elsevier, 63-114.
Chiristidis, G. E., 1998. Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece. Clay Minerals 46, 379-399.
Dill, H. G., Boss, H. R., Henning, K., Fricke, A., Ahrendt, H., 1997. Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt the Central Andes of  northwestern Peru., Mineralium Deposita 32, 149-163.
Dill, H. G., Bosse, H. R., Kassbohm, J., 2000. Mineralogical and chemical studies of volcanic relate argillaceous industrial minerals of the Central America Cordillera (Western Salvador)., Economic Geology 95, 517-538.
Fernandez-Caliani, J. C., Cantano, M., 2010. Intensive kaolinization during a lateritic weathering event in southwest spain: Mineralogical and Geochemical inferences from a relict paleosol., Catena 80, 23-33.
Fung, P. C., Shaw, D. M., 1978. Rb and Tl distributions between Phlogopite and sanidine by direct synthesis in a common vapou phase., GeochimicalActa 56, 899-909.
Goldstein, S. J., Jacobsen, S. B., 1988. Rare earth elements in river waters. Earth and planetary Science 89, 35-47.
Heald, P., Foley, N. K., Hayba, D. O., 1987. Comparative anatomy of volcanic – hosted epithermal deposite: acid – sulfate and adularia – sericite type. Economic Geology 82, 1-26.
Hedenqusit, J. W., Arribas. A., Reynolds, J. R., 1998. Evolution of an intrusion – contered hydrothermal system: Far southeast – lepanto porphyry and Epithermal Cu – Au Deposite, Philipines. Economic Geology 91. 373-404.
Hedenquist, J.W, Arribas, A., and Gonzalez- Urien, E., 2000. Exploration for epithermal gold deposits . Society of Economic Geology 13, 245-277.
Kataba, A., Pendias, H., 1992. Trace element in soils and plants, Boca Raton, Florida: CRC Press.
Koester, H., 1974. Ein Beitrag zur Geochemie und Enstehung der oberpfalzischen kaolin-Feldspat-Lagerstaetten., Geological Runds 63, 665-689.
Kowsari, A.,1996. Evaluation of Geochemical Anomalies north of Astamal (northwest of East Azerbaijan), Geological and Mineral Exploration Survey of Iran, Tehran.
MacLean, W.H., Bonavia, F.F., Sanna, G., 1997. Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia. Mineralium Deposita 32, 607–616.
Malpas, J., Dozgoren-Aydin, N.D., Aydin, A., 2001. Behaviour of chemical elements during weathering of pyroclastic rocks. Hong Kong. Environment International 26, 359-368.
Maiza, P. J., Pieroni, D., Marfil, S. A., 2003. Geochemistry of hydrothermal Kaolins in the SE area of Los Menucos, Province of Rlo Negro, Argentina, In: Dominguez, E. A., Mas, G. R., Cravero, F(Eds)., 2001. A Clay Odyssey Elsevier, Amsterdam, 123-130.
Mason, B., Moore, C.B., 1982. Principle of geochemistry, John Wiley, New York, 344 p.
Meyer, C., Hemley, J. J., 1967. Wall rock alteration in Barnes, H. L., Geochemistry of hydrothermal ore deposits, New York, holt, Rinehart and Winston, 166-235.
31
 
Montoya, J. W., Homely, J. J., 1975. Activity relations and stabiles in alkali feldespar and mica alteration re actions. Economic Geology 70, 577-594.
Ohta, A., Kawabe, I., 2001.  REE (III) adsorption onto Mn dioxide (a-MnO2) and Fe oxihyroxide: Ce (III) oxidation by a-MnO2., Geochimica et Cosmochimica Acta 65, 695-703.
Panahi, A., Young, G. M., Rainbird, R. H., 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Vill Marie, Quebec, Canada, Geochimica et Cosmochimica Acta 64, 2199-2220.
Plank, T., Langmuir, C. H., 1988. The chemical composition of subducting sediment and its consequence for the crust and mantle., Chemical Geology 145, 325-394.
Pokrovsky, O.S., Schott, J., Duper, B., 2006. Trace element fractionation and transport in boreal rivers and soil porewater of permafrost dominated basaltic terrain in Central Siberia., Geochimica et cosmochimica Acta 70, 3239-3260.
Raviasankar, R,. Manikandan, E., Dheenathayalu, M., Rao, B., Seshadresan, N. P., Nair, K. G. M., 2006. Determination of rare earth elements in bench rock samples instrumental neutronactivation analysis (INAA). Nuclear Instruments and Methods in Physics Research 251, 496-500.
Robb, L., 2005. Introduction to ore forming process. Black well publishing company, Malden, MA,. 375p.
Salvi, S., Williams-Jones, A. E., 1996. The role of hydrothermal processe in concentrating high field strength elements in the Strange Lake peralkalin complex, northeastern Canada., Geochimica et Cosmochimica Acta 60, 1917-1932.
Stoffrengen, R. E., Alpers, C. N., 1987. Woodhouseite and svanbergite in hydrothermal ore deposits products of apatite destruction during advanced argillic alteration., The Canadian Mineralogist 25,  201p.
Storr, M., Koster, H. M., Kromer, H., Hilz, M., 1991. Minerale der Crandallit-Reihe im Kaolin von Hirschau-Schnaittenbach, Oberpfalz. Z Geol Wiss 19, 677-683.
Taboada, T., Cortiza, A., Garcia, C., Garcia-rodeja, E., 2006. U and Th in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Science of the Total Envirmental 356, 192-206.
Tittey, S. R., Beane, R. E., 1981. Porphyry copper deposits, Geologic settings, petrology and tectonogenesis. Economic geology, Anniversary Volume, 214-235.
Van der Weijden, C. H., van der Weijden, R. D., 1995. Mobillity of major some redox – sensitive trace element and rare earth elements during weathering of four granitoids in central Protugal. Chemical Geology 125, 149-167.
Walter, A. V., Nahon, D., Filcoteaux, R., Girard, J. P., Melfi, A., 1995. Behaviour of major and trace element and fractionation of REE under tropical weathering of typical weathering of typical apatite-rich carbonatite from Brazil. Earth and planetary Science Letters 303., 591-601.
Wagman, D. D., Evans, W. H., Parker, V. B., Schumm. R. H., Halow, I., 1982. The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substance in SI units., J Phys Chem Ref Data 11, 2-392.
Zarasvandi, A., Zamanian H., Hejazi E., 2010. Immobile elements and mass changes geochemistry at Sar-Faryab bauxite deposit, Zagros Mountains, Iran. Journal of Geochemical Exploration. 107, 77–85.
Zielinski, R.A., 2003. The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome Formation, Colorado, U.S.A, Chemical Geology 35, 185-200.