زمین شیمی ایزوتوپ های پایدار گوگرد و اکسیژن کانی های سولفیدی و سولفاتی کانسار مس پورفیری پرکام شهر بابک، استان کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده علوم زمین دانشگاه دامغان

2 گروه زمین شناسی دانشکده علوم دانشگاه شهید باهنر کرمان

چکیده

کانسار مس پورفیری پرکام در 87 کیلومتری شمال غرب معدن مس پورفیری سرچشمه و 2 کیلومتر معدن مس پورفیری میدوک قرار دارد. مجموعه آتشفشانی رازک با سن ائوسن میزبان این کانسار می باشد. کانیزایی مس کانسار پرکام در ارتباط با جایگزینی توده های نفوذی دیوریت پورفیری و کوارتز دیوریت پورفیری با سن میوسن است. ایزوتوپ گوگرد کانی های سولفیدی (پیریت و کالکوپیریت) بیانگر گوگرد ماگمایی با مقدار 7/0 + در هزار در کانسار پرکم می باشد. δ 34 S کانی انیدریت نسبتاً به کانی های سولفیدی در کانسار پرکام تغییر می کند و تغییر می کند ‰ 7 / 11-3 / 21 و با مقدار متوسط ​​‰ 1/16 نشان می دهد. دمای محاسبه شده با استفاده از ایزوتوپ گوگرد جفت کانی انیدریت-پیریت از C ° 263.3 تا C ° 441.9 در تغییر است. داده های ایزوتوپی نشاندهنده اختلاط آب ماگمایی و جوی در تشکیل محل گرم گرم کانسار پرکام می باشد (‰ 08/3 تا 67/5 = (δ 18 OH 2 O . تشابه مقادیر د 34 S کانی های سولفیدی و سولفاتی کانسار مس پورفیری پرکام با سایر کانسارهای مس پورفیری کمربند ارومیه-دختر گویای تأثیر فرایندهای مشابه در تشکیل این کانسارها می باشد. 

کلیدواژه‌ها


علیرضایی، س.، 1387، زمین شناسی کانسارها، نشر دانش امروز، 1155 صفحه (ترجمه)
معانی جو، م.، مستقیمی، م.، عبدالهی ریسه، م.، سپاهی گرو، ع.ا.، 1391، مطالعات سیستماتیک ایزوتوپ های پایدار گوگرد و سیالات درگیر گروه های رگچه های مختلف کانسار مس پورفیری سرچشمه، بر اساس داده های جدید، مجله زمین شناسی اقتصادی، شماره2، جلد 4، ص 217 - 239.
محمدی لقب، ح.، تقی پور، ن.، 1390، تکامل فیزیکو ـ شیمیایی سیال گرمابی در کانسار مس پورفیری سارا (پرکام)، استان کرمان، مجله زمین شناسی کاربردی پیشرفته، جلد 1، شماره 1، ص 11-24.
محمدی لقب، ح.، تقی پور، ن.، ایرانمنش، م.ر.، 1389، الگوی دگرسانی و کانی زایی کانسار مس پورفیری پرکام (پرکام)، شهر بابک، استان کرمان، نخستین همایش انجمن زمین شناسی اقتصادی ایران، دانشگاه فردوسی مشهد
مهندسین مشاور کان ایران، 1387، مطالعات زمین شناسی و دگرسانی در محدوده پرکام، 87 صفحه
 
Berberian.M., and King.G.C., 1981, Towards a paleogeography and tectonic evolution of Iran, Canadian Journal of Earth Sciences, Vol:18, p: 210-265
Bethke.P.M., Rye.R.O., Stoffregen.R.E., Vikre.P.G., 2005, Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: integration of geological, stable-isotope, and fluid-inclusion evidence, Chemical Geology, Vol: 215, p: 281-315
Calagari.A.A., 2003, Stable isotope (S, O, H and C) studies of the phyllic and potassic–phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran, Journal of Asian Earth Sciences, Vol:21, p:767-780
Chiba.H., Kusakabe.M.,  Hirano.S.I.,  Matsuo.S.,  Somiya.S., 1981, Oxygen isotope fractionation factors between anhydrite and water from 100 to 550°C, Earth and Planetary Science Letters, Vol:53, p:55-62
Dimitrijevic.M., 1973, Geology of Kerman region: institute for geological and mining exploration and institution of nuclear and other mineral raw materials, Beograd-Yugoslavia, Iran Geol. Survey Rept. Yu/52.
Field.C.W., and Gustafson.L.B., 1976, Sulfur isotopes in the porphyry copper deposit at E1 Salvador, Chile, Economic Geology, Vol: 71, p: 1533-1548
Field.C.W., Zhang.L., Dilles.J.H., Rye.R.O., Reed.M.H., 2005, Sulfur and oxygen isotopic record in sulfate and sulfide minerals of early, deep, pre-Main Stage porphyry Cu–Mo and late Main Stage base-metal mineral deposits, Butte district, Montana, Chemical Geology, Vol: 215, p: 61-93
Grinenko, V.A., Ustinov, V.I., Grinenko, L.N., 2008, Formation Conditions of Sulfide–Sulfate Assemblages in Hydrothermal Deposits:Isotopic and Fluid Inclusion Constraints, Geochemistry International, Vol: 46, No. 9, p: 945–950.
Hassanzadeh.J., 1993, Metallogenic and tectono-magmatic events in SE sector of the Cenozoic active continental margin of Central Iran (Shahr-Babak, Kerman province), PH.D thesis, University of California, 201P.
Nourali.S., Mirnejad.H., 2012, Hydrothermal evolution of the Sar-Kuh porphyry copper deposit, Kerman, Iran: A fluid inclusion and sulfur isotope investigation, Jgeope, Vol: 2, p: 93-107 
Ohmoto.H., Rye.R.O., 1979, Isotopes of sulfur and carbon. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, (2nd Ed.)Wiley, New York, p: 509– 567
Ohmoto.H., Lasaga.A.C., 1982, Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems, Geochim.Cosmochim. Acta, Vol:46, p:1727–1745
 Ohmoto.H., 1986, Stable isotope geochemistry of ore deposits. In J.W. Valley, H.P. Taylor, Jr., and J.R. O'Neil, eds., Reviews in Mineralogy, Volume 16: Stable Isotopes in High Temperature Geological Processes, Mineralogical Society of America, p:491-560
Ohmoto.H., Kaiser.C.J., and Geer.K.A., 1990, Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted basemetal deposits. In: H.M. Herbert  & S.E. Ho eds., Stable Isotopes and Fluid Processes in Mineralisation: The Univ. of  Western Australia Publication, No: 23, p:70-120
Ohmoto.H., Goldhaber.M.B., 1997, Isotopes of sulfur and carbon. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, (2nd Ed.)Wiley, New York, p: 517– 612
Taghipour.N., Aftabi.A.L., and Mathur.R., 2008, Geology and Re-Os geochronology of mineralization of the Miduk porphyry copper deposit, Iran, Resource Geology, Vol: 58, Issue 2, p: 143-160
Taylor.H.P.Jr., 1979. Oxygen and hydrogen isotope relationships in hydrothermal minerals deposit: In geochemistry of hydrothermal ore deposits, 2nded., Barnes, H.J. (ed), New York, John Wiley, p:236-277