Global Warming in Khuzestan Province during 1988-2016, using the nonparametric method

Kurosh Bahadori1*, Zahra Beygomhедjizadеh1, Mohamad Saligheh1

1-Department of Physical Geography, Faculty of Geographical Sciences, Kharazmi University

Keywords: Global warming, Time series, Moving averages, Trend line equation, Trend line coefficient, Nonparametric

1-Introduction

With the beginning of the Industrial Revolution and the growth of industries and factories and thereby with the increased use of fossil fuels on the one hand and destruction of forests and agricultural land-use change, on the other hand, the volume of greenhouse gases, especially carbon dioxide has increased in recent decades. The concentration of carbon dioxide has increased from 280 ppm in 1750 to 379 ppm in 2005 and exceeded 390 ppm in 2010 (IPCC Summary for Policymakers, 2013). The increased concentration of greenhouse gases is the leading cause of global warming. It causes vast and profound changes in the Earth's climates. Global warming began in the late 19th century and led to an increase of 0.85 °C in the mean air temperature near land and ocean surface until the early 21st century. The mean temperature of land and ocean surface over the period of 1880-2016 in Figure 1 shows an increase of 0.85 °C equivalent to 0.65 °C in oceans and 1.06 °C on the land surface. Temperature changes around the world have been different. From 1979, the Earth’s surface temperature has increased about twice as the oceanic temperature (Trenberth et al., 2007). The oceanic temperature has risen slowly than lands due to the higher thermal capacity of oceans than lands (Sutton et al., 2007). Apart from lands and ocean surface, the mean temperature of the bottom layer of the troposphere shows an increase of 0.13-0.22 °C per decade since 1979. But recent reports of the World Meteorological Organization suggest that the warmest years on the Earth from 1860 until now occurred during the last 25 years (1990 to 2014). In the meantime, 2014 was the warmest year with 0.68 °C temperature rise higher than the global average followed, respectively, by 2010 and 2005 with 0.66 °C and 0.65 °C temperature rise compared to the global average (World Meteorological Organization, 2014). Much research has been conducted on the temperature change trends by researchers over the world, including Iran. Türkes et al. (1998) investigated the average annual temperature variability in a 63-year period in 85 stations in Turkey. Jianping et al. (2002) used climate variables to demonstrate climate change in China. They showed that the average rainfall, air temperature, evapotranspiration, sunshine hours, and average annual wind speed reduced in all stations, while the average annual rainfall and relative humidity increased slightly. Numerous researches around the world have corroborated this issue. For example, Freiwan and Kadioğlu (2008) in Jordan. Qiang et al. (2005) in China, Kumar et al. (2005) in Firenze, Italy, and Tayanc et al. (2009). Turkey demonstrated trends in maximum and minimum temperatures time series. Alijani and Ghavidel Rahimi (2005) investigated the relationship between temperature and precipitation in Tabriz and the Earth's temperature anomalies. Using linear regression and neural networks, they found that the average annual air temperature in Tabriz is affected by greenhouse warming. According to their results, 59 percent of stations showed a positive trend, while 41 percent showed a negative trend in temperature changes.
Khuzestan province is located in the southwest of Iran. It has an area of about 67,282 km² with a longitude of 47° to 50°, and latitude of 30° to 33°. Khuzestan province is limited to Lorestan and Ilam provinces from the north, Chahar-Mahal-Bakhtiari, and Kohgiluyeh and Boyer-Ahmad provinces from the east and Bushehr province from the southwest. The southern limit of Khuzestan province in the Persian Gulf. Khuzestan province is limited to Iraq from the west. The mean annual temperature of the selected stations (Ahwaz, Abadan, Dezful, Bostan, Omidieh, Ramhormoz, Mahshahr, and Masjed-Soleiman) during 1998-2016 was extracted from the meteorological database of Khuzestan province (Fig. 2), to detect global warming in Khuzestan province.

Table 1. The characteristics of synoptic stations in Khuzestan province.

<table>
<thead>
<tr>
<th>Station</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abadan</td>
<td>48,12,53</td>
<td>30,22,37</td>
<td>6.6</td>
</tr>
<tr>
<td>Omidieh</td>
<td>49,40,14</td>
<td>30,44,32</td>
<td>26</td>
</tr>
<tr>
<td>Ahwaz</td>
<td>48,44,39</td>
<td>31,20,44</td>
<td>22.5</td>
</tr>
<tr>
<td>Bostan</td>
<td>48,00,36</td>
<td>31,42,28</td>
<td>8.6</td>
</tr>
<tr>
<td>Dezful</td>
<td>48,25,59</td>
<td>32,15,12</td>
<td>82</td>
</tr>
<tr>
<td>Ramhormoz</td>
<td>49,35,47</td>
<td>31,16,22</td>
<td>150</td>
</tr>
<tr>
<td>Mahshahr</td>
<td>49,09,36</td>
<td>30,33,40</td>
<td>6.2</td>
</tr>
<tr>
<td>Masjed-Soleiman</td>
<td>49,14,26</td>
<td>32,00,03</td>
<td>320</td>
</tr>
</tbody>
</table>
2.1. Trend

Generally, time-series behavior is a combination of several different factors, such as the long-term trend of seasonal changes, cyclical changes, and random changes which can be fully deconstructed and examined based on each factor. The trend is a critical component of a series that is widely used to study the long-term trends of climate time series. Several tests have been suggested to examine the significance of trends; some of them are parametric, and some are nonparametric. In the case of the normal distribution of data, the significance test can be carried out by testing the hypothesis \(a_1 = 0 \) using the T statistics.

3. The Mann-Kendall test

The Mann-Kendall test was first introduced by Mann in 1945 and then was developed by Kendall in 1975. This method is widely used in the analysis of meteorological and hydrological series trends. As an advantage, this method is adequately applied in time series that do not follow a specific statistical distribution. As another advantage, this method is slightly affected by the limit values observed in a number of time series.

Table 2. The trend coefficient of air temperature in Khuzestan province stations during 1988-2016.

<table>
<thead>
<tr>
<th>Station</th>
<th>The trend coefficient of the mean temperature of synoptic stations in Khuzestan province</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abadan</td>
<td>0.079</td>
</tr>
<tr>
<td>Ahwaz</td>
<td>0.076</td>
</tr>
<tr>
<td>Omidieh</td>
<td>0.074</td>
</tr>
<tr>
<td>Bostan</td>
<td>0.107</td>
</tr>
<tr>
<td>Dezful</td>
<td>0.068</td>
</tr>
<tr>
<td>Ramhormoz</td>
<td>0.97</td>
</tr>
<tr>
<td>Mahshahr</td>
<td>0.74</td>
</tr>
<tr>
<td>Masjid-Soleiman</td>
<td>0.046</td>
</tr>
</tbody>
</table>

The results of Table 2 represent a significant increase in air temperature in selected stations in Khuzestan province. During this period, Bostan and Ramhormoz stations show the maximum temperature rise among synoptic stations in Khuzestan province with the highest trend coefficients of 0.107 and 0.097, respectively. Also, Masjid-Soleiman station shows the lowest temperature rise among the stations with a trend coefficient of 0.046 (Figs 3 - 10).

![Fig. 3. The mean air temperature in Abadan station during 1988-2016.](image-url)
Fig. 4. The mean air temperature in Ahwaz station during 1988-2016.

Fig. 5. The mean air temperature in Omideh station during 1988-2016.

Fig 6. The mean air temperature in Bostan station during 1988-2016.

Fig. 7. The mean air temperature in Dezful station during 1988-2016.

Fig. 8. The mean air temperature in Ramhormoz station during 1988-2016.
The results of the Mann-Kendall test on the annual temperature in Khuzestan province stations represent a significant positive trend for the selected stations in Khuzestan province during 1988-2016. Apart from the Masjed-Soleiman synoptic station, which shows a significant positive trend at the significance level of 5%, other stations show a significant positive trend at the significance level of 1% (Table 3).

<table>
<thead>
<tr>
<th>Station</th>
<th>Total score</th>
<th>z-static</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Abadan</td>
<td>84</td>
<td>2.71</td>
<td>Significant positive trend</td>
</tr>
<tr>
<td>2 Ahwaz</td>
<td>88</td>
<td>2.84</td>
<td>Significant positive trend</td>
</tr>
<tr>
<td>4 Omidieh</td>
<td>97</td>
<td>3.16</td>
<td>Significant positive trend</td>
</tr>
<tr>
<td>4 Bostan</td>
<td>114</td>
<td>3.7</td>
<td>Significant positive trend</td>
</tr>
<tr>
<td>7 Dezful</td>
<td>97</td>
<td>3.14</td>
<td>Significant positive trend</td>
</tr>
<tr>
<td>8 Ramhormoz</td>
<td>101</td>
<td>3.27</td>
<td>Significant positive trend</td>
</tr>
<tr>
<td>10 Mahshahr</td>
<td>96</td>
<td>3.11</td>
<td>Significant positive trend</td>
</tr>
<tr>
<td>11 Masjed-Soleiman</td>
<td>64</td>
<td>2.06</td>
<td>Significant positive trend</td>
</tr>
</tbody>
</table>

5. Conclusion

According to the results, in a similar vein to other parts of the world and Iran, Khuzestan province is not exempt from the phenomenon of global warming in the past 25 years. Synoptic stations in Khuzestan province have experienced an increase in mean temperature at significance levels of 1 to 5 percent. Bostan and Ramhormoz stations showed the highest temperature rise compared to other stations, while Masjed-Soleiman station showed the lowest temperature rise in Khuzestan province. According to the results, it seems that the rising temperature trend in northern stations such as Dezful and Masjed-Soleiman is less prominent than the southern and central regions of Khuzestan province.
References

بررسی پدیده گرمایش جهانی در استان خوزستان طی دوره ۱۹۸۸–۲۰۱۴

با استفاده از آزمون‌های نوبت‌آمادگی

کورش بهادری
دانشکده جغرافیا، دانشگاه خوارزمی، تهران، ایران
زهره بیگم حجازی‌اده
دانشکده جغرافیا، دانشگاه خوارزمی، تهران، ایران
محمد سلیمی
دانشکده جغرافیا، دانشگاه خوارزمی، تهران، ایران

تاریخ دریافت: ۱۳۹۸/۱۱/۲۰ تاریخ پذیرش: ۱۳۹۹/۰۱/۰۷

akurosh228@yahoo.com

چکیده

افزایش غلظت میزان گازهای هلواء‌ای منجر به افزایش دمای سطح کره زمین طی قرن گذشته، در طول ۲۷۴ سال از سال ۱۹۹۱ تا ۲۰۱۴ رخداده است. این افزایش دمای کره زمین باعث کاهش احتمال این شد که توسعه تغییرات بیشتری در جهانی اقیانوسی، جغرافیایی و اقیانوسی در آینده будه است.

در این پژوهش تغییرات در دمای غلاف ایستگاه محل اقیانوسی ادامه داده شد. بدین معنی که بیشتر از سال ۱۹۹۱ تا ۲۰۱۴ افزایش دمای تغییرات بیشتری در جهانی اقیانوسی و اقیانوسی در آینده будه است.

کلمات کلیدی: گرمایش جهانی، سرما، یک‌پله‌ای، دمای سطح، اثرات، پیش‌بینی، مدل‌سازی، بیانگر، شروط، دمای سطح، دمای سطح
مواد ورودی‌ها
استان خوزستان

استان خوزستان که در جنوب غربی کشور واقع شده است دارای مساحتی حدود 672،876 کیلومتر مربع و گستره جغرافیایی 42 درجه شمالی به 26 درجه جنوبی و وسعت یک و فاصله دریایی 1384 کیلومتری و در مرز با ایران و عراق قرار دارد.

شکل 6 موقعیت ایستگاه‌های مطالعاتی هواشناسی استان خوزستان.

Fig 1. Mean air temperature changes from 1880 to 2016.

Fig 2. Location of studied stations in the map showing the Khuzestan Province divisions.

متوسط بارش، دمای هوا، تبخیر-تعرق، ساعات افتایی و سرعت پا بسیار در همه ایستگاه‌های مورد مطالعه کاهش یافته بود، در حالی که بارش سالانه و متوسط رطوبت نسبی افزایش یافته بودند. تحقیقات بسیاری از محققان نیز در نقاط مختلف دنیا مؤکد این موضوع برای افزایش گرمایش جهان بررسی کرده‌اند. از جمله چندانی که در این سمت اشاره نشده‌اند.

نمونه‌وریکی از روند افزایشی و کاهشی در داده‌های بارش سالانه نقاط مختلف کشور بوده که در بیشتر ایستگاه‌های مورد مطالعه مشابه مشاهده می‌شود که در بیشتر آنها این روند مشابه است. همچنین تغییرات در داده متوسط بارش سالانه مشاهده شده و کمترین تغییرات دما در فصل زمستان محسوب می‌شود که افزایش دما در آن مدت در طول سال به سمت سردترشدن پیش می‌رود.

شکل 0 تغییرات دمای میانگین هوا از سال 1880تا 2016.

Ghavidel Rahimi, 2005. در این تحقیق نیز که براساس روشهای وابسته‌کننده و شبکه عصبی بود، مشخص گردید که دمای سالانه تغییر تحت تاثیر کاهش افزایشی است.

تحت‌بروی یک گزارش مرتبط با تغییرات دمای میانگین هوا در سالیانه تغییرات دمای میانگین هوا از سال 1880 تا 2016 نشان می‌دهد که در این مدت دمای میانگین هوا در سراسر دنیا افزایش یافته است.

شکل 1 تغییرات دمای میانگین هوا از سال 1880 تا 2016.

شکل 2 موقعیت ایستگاه‌های مطالعاتی هواشناسی استان خوزستان.

شکل 3 موقعیت ایستگاه‌های مطالعاتی هواشناسی استان خوزستان.

شکل 4 موقعیت ایستگاه‌های مطالعاتی هواشناسی استان خوزستان.

شکل 5 موقعیت ایستگاه‌های مطالعاتی هواشناسی استان خوزستان.
دولت 1- مشخصات ایستگاه‌های سینوپتیک استان خوزستان.

جدول 1. The characteristics of synoptic stations in Khuzestan Province.

<table>
<thead>
<tr>
<th>Station</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abadan</td>
<td>48,12,53</td>
<td>30,22,37</td>
<td>6,6</td>
</tr>
<tr>
<td>Omidieh</td>
<td>49,40,14</td>
<td>30,44,32</td>
<td>26</td>
</tr>
<tr>
<td>Ahwaz</td>
<td>48,44,39</td>
<td>31,20,44</td>
<td>22,5</td>
</tr>
<tr>
<td>Bostan</td>
<td>48,00,36</td>
<td>31,42,28</td>
<td>8,6</td>
</tr>
<tr>
<td>Dezful</td>
<td>48,25,59</td>
<td>32,15,12</td>
<td>82</td>
</tr>
<tr>
<td>Ramhormoz</td>
<td>49,35,47</td>
<td>31,16,22</td>
<td>150</td>
</tr>
<tr>
<td>Mahshahr</td>
<td>49,09,36</td>
<td>30,33,40</td>
<td>6,2</td>
</tr>
<tr>
<td>Masjed-Soleiman</td>
<td>49,14,26</td>
<td>32,00,03</td>
<td>320</td>
</tr>
</tbody>
</table>
Table 2. The trend coefficient of air temperature in Khuzestan Province stations during 1988-2016.

<table>
<thead>
<tr>
<th>Station</th>
<th>The trend coefficient of the mean temperature of synoptic station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abadan</td>
<td>0.079</td>
</tr>
<tr>
<td>Ahwaz</td>
<td>0.076</td>
</tr>
<tr>
<td>Omidieh</td>
<td>0.074</td>
</tr>
<tr>
<td>Bostan</td>
<td>0.107</td>
</tr>
<tr>
<td>Dezful</td>
<td>0.068</td>
</tr>
<tr>
<td>Ramhormoz</td>
<td>0.97</td>
</tr>
<tr>
<td>Mahshahr</td>
<td>0.74</td>
</tr>
<tr>
<td>Masjed-Solaiman</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Fig 3. The mean air temperature in Abadan station during 1988-2016.

Fig 4. The mean air temperature in Ahwaz station during 1988-2016.

Fig 5. The mean air temperature in Omidieh station during 1988-2016.
شکل ۶: میانگین دما ایستگاه بستان دوره ۱۹۸۸-۲۰۱۶.

Fig 6. The mean air temperature in Bostan station during 1988-2016.

شکل ۷: میانگین دما ایستگاه Dezful دوره ۱۹۸۸-۲۰۱۶.

Fig 7. The mean air temperature in Dezful station during 1988-2016.

شکل ۸: میانگین دما ایستگاه Ramhormoz دوره ۱۹۸۸-۲۰۱۶.

Fig 8. The mean air temperature in Ramhormoz station during 1988-2016.

شکل ۹: میانگین دما ایستگاه Mahshahr دوره ۱۹۸۸-۲۰۱۶.

Fig 9. The mean air temperature in Mahshahr station during 1988-2016.
مجله زمین شناسی کاربردی پیشرفته بهار 99، دوره 01، شماره 0

Fig 10. The mean air temperature in Masjed Solieman station during 1988-2016.

نوبنده‌گان این مقاله مراتب تشکر و قدردانی خود را از معاونت آموزشی دانشکده جغرافیایی دانشگاه خوارزمی اقوای دکتر احمدآبادی و استاد گرامی سردار حامد علی‌پور اهدا کردند. به ایستگاه‌های دارا بوده و ایستگاه مسجد سلیمان کمترین افزایش دما را نسبت به سایر ایستگاه‌های استان خوزستان دارا بوده است.

منابع

