بررسی مس رگه ای شورک و زون گوسان همراه (شمال غرب بیرجند) بر اساس دگرسانی، کانی سازی، زمین شیمی و سیالات درگیر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشکده علوم، دانشگاه فردوسی مشهد

2 گروه زمین‌شناسی، دانشکده علوم، گروه پژوهشی اکتشاف ذخایر معدنی شرق ایران، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

محدوده شورک بخشی از پهنه آتشفشانی-نفوذی در بلوک لوت، شمال‌غرب‌ شهر بیرجند است. طی پی‌جویی اولیه در این منطقه توسط پردازش داده‌های ماهواره‌ای آستر به روش نقشه برداری زوایای طیفی، دگرسانی‌های پروپلیتیک، آرژیلیک و اکسیدهای آهن بارزسازی شدند. این گستره‌ شامل برونزدهایی از سنگ‌های آتشفشانی (با ترکیب آندزیتی تا ریولیتی) بوده که واحد‌های نیمه‌عمیق و عمیق با ترکیب گابرویی تا دیوریتی در آنها نفوذ نموده‌اند. کانی‌سازی رگه‌ای در دو مرحله شکل گرفته که شامل، 1. کوارتز-پیریت-کالکوسیت-کالکوپیریت-بورنیت±فاهلور±اسفالریت همراه با دگرسانی آرژیلیکی- سیلیسی و 2. کوارتز-کالکوسیت-گالن±اسفالریت همراه با دگرسانی سیلیسی-کربناتی می‌باشد. مطالعه سیالات درگیر اولیه در بلورهای کوارتز همزمان با مرحله اول و دوم کانی‌سازی رگه‌ای، متوسط دمای همگن شدن به ترتیب 267 و 215 درجه سانتی‌گراد را نشان می‌دهند. بر پایه مطالعات سرمایش، میانگین دمای ذوب آخرین قطعه یخ (Tfmice) در این دو مرحله به ترتیب برابر با 4/19 و 1/11 درصد وزنی نمک طعام است. اختلاط، رقیق شدگی توسط آب‌های جوی و جوشش طی تحول سیالات گرمابی و شکل-گیری رگه‌ها موثر بوده است. بر پایه شواهدی چون کنترل ساختاری کانی‌سازی، نوع دگرسانی، کانی‌شناسی ساده ذخیره و داده‌های دماسنجی، کانسار شورک مشابه کانسارهای اپی‌ترمال می‌باشد. حضور متعدد رگه‌های اپی‌ترمال مس در مقیاس وسیع نشان دهنده پتانسیل اقتصادی بالای این محدوده می‌باشد.

کلیدواژه‌ها


Adams, S.F., 1920. A microscopic study of vein quartz. Economic Geology 15, 623–664.

Albinson, F. T., Nelson, C.E., 2001. New Mines and Discoveries in Mexico and Central America. Society of Economic Geologists Special Publication, p. 362.

Anderson, J.A., 1982. Characteristics of leached capping. In: Titley, S.R. (Ed.), Advances in geology of the porphyry copper deposits. Tucson. The University of Arizona Press, pp. 275–295.

Barnes, H. L., 1997. Geochemistry of hydrothermal ore deposits, 3st edition, New York, John Wiley and Sons, p. 797.

Baumgartner, R., Fontboté, L., Vennemann, T., 2008. Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb- Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Economic Geology 103, 493–537.

Benning, L.G., Seward, T. M., 1996. Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150-400 C and 500-1500 bar. Geochimica et Cosmochimica Acta 60, 1849–1871.

Bethke, P.M., Rye, R.O., Stoffregen, R.E., Vikre, P.G., 2005. Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: Integration of geological, stable-isotope, and fluid-inclusion evidence. Chemical Geology 215, 281–315.

Bodnar, R.J, 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta 57, 683–684.

Bodnar, R.J., 1995. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: Thompson, J.F.H. (Ed.), Mineralogical Association of Canada Short Course, Magmas, Fluids and Ore Deposits. pp. 139–152.

Brown, P.E., Lamb, W.M., 1989. P-V-T properties of fluids in the system H2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies, . Geochimica et Cosmochimica Acta 53, 1209–1221.

Camprubí, A., Albinson, T., 2007. Epithermal deposits in mexico-update of current knowledge and an empirical reclassification. Geological Society of America Special Paper 422, 377–415.

Davis, D.W., Lowenstein, T.K., Spencer, R.J., 1990. Melting behavior of fluid inclusions in laboratory-grown halite crystals in systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O and NaCl–CaCl2–H2O. Geochimica et Cosmochimica Acta 54, 591–601.

Einaudi, M.T., Hedenquist, J.W., Inan, E., 2003. Sulfidation state of hydrothermal fluids: The porphyry-epithermal transition and beyond. Society of Economic Geologists and Geochemical Society Special Publication 10, pp. 285–313.

ENVI User's Guide, 2003, ENVI User's Guide V. 4.0, Research Systems, Inc, p. 1084.

Fifarek, R.H., Rye, R.O., 2005. Stable isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru: Influence of hydrodynamics on SO-H2S sulfur isotopic exchange in magmatic-steam and steam-heated environments. Chemical Geology 215, 253–279.

Fournier, R.O., 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology 94, 1193–1212.

Gokce, A., 2000. Ore deposits. Cumhuriyet University Publication 100, pp. 1–336.

Goldstein, R.H., 2003. Petrographic Analysis of Fluid Inclusions. In I. Samson, A. Anderson, D. Marshall (Editors), Fluid inclusions: Analysis and interpretation. Mineralogical Association of Canada, Short Course Handbook 32, 9–53.

Graupner, T., Götze, J., Kempe, U., Wolf, D., 2000. CL for characterizing quartz and trapped fluid inclusions in mesothermal quartz veins: Qolqoleh Au ore deposit, Uzbekistan. Mineralogical Magazine 64, 1007–1016.

Guilbert, J.M., Park, C.F., 1886. The Geology of Ore Deposits. New York: W.H. Freeman and Co., p. 985.

Hedenquist, J.W., Arribas, A., Reynolds, T.J., 1998. Evolution of an intrusion centered hydrothermal system: Far Southeast–Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology 93, 373–404.

Heinrich, C.A., 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Mineralium Deposita 39, 864–889.

Henley, R.W., 1986. Primary controls on epithermal mineralization in the Taupo volcanic zone: International volcanological congress, proceeding of symposium 5: volcanism, hydrothermal systems and related mineralization, p. 99.

Hustone, D.L., Large, R.R., 1989. A chemical model for the concentration of gold in volcanogenic massive sulfide deposit. Ore Geology reviews 4, 171–200.

Ineson, P.R., 1989. Introduction to Practical Ore Microscopy. Longman publishers, England, p. 181.

Javidi Moghaddam, M., Karimpour, M. H., Malekzadeh Shafaroudi, A., Heidariane Shahri, M. R., 2013. Satellite data processing, alteration, mineralization and geochemistry of Mehrkhash area prospect, North West of Birjand. Journal of Earth Science Researches 4, 56-69 (in Persian with English abstract).

Javidi Moghaddam, M., Karimpour, M. H., Malekzadeh Shafaroudi, A., Heidariane Shahri, M. R., 2014. Geology, alteration, mineralization and geochemistry of Shekaste Sabz area prospect, North West of Birjand. Journal of Crystallography and Mineralogy 22, 507-520 (in Persian with English abstract).

Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, A. T., Barloon, J. P., Goetz, A.F. H., 1993. The spectral image processing system (SIPS), Interactive visualization and analysis of imaging spectrometer data. Remote sensing of environment 44, 145–163.

Laznicka, P., 1988. Breccias and coarse fragmentites. Petrology, environments, associations, ores. Elsevier, Developments in Economic Geology 25, p. 832.

Lotfi, M., 1982. Geological and geochemical investigations on the volcanogenic Cu, Pb, Zn, Sb ore-mineralization in the Shurab-Gale Chah and northwest of Khur (Lut, east of Iran). Ph.D Thesis. University of Hamburg, Hamburg.

Lotfi, M., 1995. Geological map of Sarghanj. Scale 1:100,000. Geological Survey of Iran.

Malakhov, A.A., 1968. Bismuth and antimony in galena as indicators of some conditions of ore formation. Geochemistry International 7, 1055–1068.

Malpas, J., Duzgoren-Aydin, N. S., Aydin, A., 2001. Behaviour of chemical elements during weathering of pyroclastic rocks, Hong Kong. Environment International 26, 359–368.

Mango, H., 1988. A fluid inclusion and isotopic study of the Las Rayas Ag-Au-Pb-Cu mine, Unpublished Master's thesis, Dartmouth College, Hanover, p. 109.

Moncada, D., Mutcher, S., Nieto, A., Reynolds, T.J., Rimstidt, J.D., Bodnar, R.J., 2012. Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: Application to exploration. Journal of Geochemical Exploration 114, 20–35.

Nash, J.T., 1976. Fluid inclusion petrology, data from porphyry copper deposits and applications to exploration. United States Geological Survey, Professional Paper 907, 1-16.

Ossandón, G., Fréraut, R., Gustafson, L.B., Lindsay, D.D., Zentilli, M., 2001. Geology of the Chuquicamata Mine: A progress report. Economic Geology 96, 351–366.

Palyanaova, G., 2008. Physicochemistry modeling of the coupled behavior of gold and silver in hydrothermal processes, gold fineness, Au/Ag ratios and their possible implications. Chemical Geology 255, 399–413.

Prokofiev, V.Y., Garofalo, P.S., Bortnikov, N.S., Kovalenker, V.A., Zorina, L.D., Grichuk, D.V., Selektor, S.L., 2010. Fluid inclusion constraints on the genesis of gold in the Darasun district (eastern Transbaikalia), Russia. Economic Geology 105, 395–416.

Ramdohr, P., 1970. The ore minerals and their intergrowth. Pergamum Press, University of Michigan, Michigan, p. 1174.

Ramdohr, P., 1980. The ore minerals and their intergrowths. Pergamon Press, Oxford, p. 1280.

Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy 12, p. 644.

Rollinson, H., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Scientific & Technical, Essex, UK, p. 352.

Seward, T.M., Barnes, H.L., 1997. Metal transport by hydrothermal ore fluids. Geochemistry of hydrothermal ore deposits 3, 435–486.

Shepherd, T., Rankin, A.H., Alderton, D.H.M., 1985. A prac- tical guide to fluid inclusion studies, 1st edition, Blackie, Glasgow and London, p. 239.

Sillitoe, R.H., 2005. Supergene oxidized and enriched porphyry copper and related deposits: Society of Economic Geologists. Economic Geology 100th Anniversary Volume, pp.723–768.

Simeone, R., Simmons, S.F., 1999. Mineralogical and fluid inclusion studies of low sulfidation epithermal veins at Osilo (Sardinia), Italy. Mineralium Deposita 34, 705–717.

Simmons, S.F., Christenson, B.W., 1994. Origins of calcite in a boiling geothermal system. American Journal of Science 294, 361–400.

Tarkian, M., Lotfi, M., Baumann, A., 1983. Tectonic, magmatism and the formation of mineral deposits in the central Lut, east Iran, Ministry of mines and metals. GSI, Geodynamic project (geotraverse) in Iran 51, 357–383.

Taylor, R., 2011. Gossans and Lached Cappings Field Assessment. Berlin, Springer-Verlag, p. 146.

Thiersch, P.C., Williams-Jones, A.E., Clark, J.R., 1997. Epithermal mineralization and ore controls of the Shasta Au–Ag deposit, Toodoggone District, British Columbia. Mineralium Deposita 32, 44–57.

Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–187.

Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Elsevier, Lithos 55, 229–272.

Zhonghai, H., Binbin, H., Cui, Y., 2010. Hydrothermal alteration mapping using Aster data in east Kunlun Mountain, China. , Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, pp. 4514–4517.