آنالیز مقطع نازک سنگ و کاربرد آن در مهندسی سنگ (مطالعه موردی: گرانیتوئید کوهسنگی مشهد)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد زمین شناسی مهندسی، دانشگاه فردوسی مشهد

2 دکترای تخصصی استاد گروه زمین شناسی، دانشگاه فردوسی مشهد

3 دانشیار گروه زمین شناسی، دانشگاه فردوسی مشهد

چکیده

با استفاده از کمی سازی بافت میکروسکوپی بر مبنای آنالیز تصویر و آزمون مقاومت بار نقطه­ای، نمونه­هایی از گرانیتوئید کوهسنگی مشهد مورد بررسی قرار گرفت. خصوصیات شیمیایی، فیزیکی (برآورد شکل، اندازه ذرات)، پتروگرافیکی (مشخصات بافتی، آنالیز مدال، طبقه­بندی)، کانی­شناسی و مکانیکی (مقاومت، حفرپذیری، سایندگی) این گرانیتوئید که در بخش جنوبی مشهد قرار دارد، با استفاده از روش نیمه اتوماتیک توسعه یافته بررسیشد. پتروگرافی تصاویر میکروسکپی مقاطع نازک با به کارگیری نرم­ افزار JMicroVision انجام شد. نتایج نشان می­دهند که ترکیب این توده گرانیتی شامل ارتوکلاز (55/20%)، الیگوکلاز (95/31%)، کوارتز بتا (71/29%) و بیوتیت (79/17%) می باشد. به علت تنوع پتروگرافیکی و پیچیدگی ساختاری، رفتار مهندسی توده­های سنگی در گرانیتوئیدها در محدوده گسترده­ای جای می­گیرد، اما بر مبنای نتایج به دست آمده در این مطالعه می­توان نتیجه گرفت که کمی سازی بافت میکروسکپی و روش نیمه اتوماتیک یک شیوه کاربردی برای آنالیز خصوصیات مکانیکی و آنالیزهای شیمیایی سنگ­های گرانیتوئیدی می­باشد.
 

کلیدواژه‌ها


سمیعی، س.، کریم پور، م.ح.، حیدریان شهری، م.ح.، سانتوز، ژ.ف.، قادری، م.، 1393، سنگ نگاری، ویژگی­های ژئوشیمی، ایزوتوپ­های استرانسیوم و نئودیمیم و منشاء توده­های گرانیتوئیدی منطقه اکتشافی خونیک، جنوب بیرجند، مجله زمین شناسی کاربردی پیشرفته، شماره 12، ص 63-79.

زمانیان. ح.، دولتشاهی. س. و زارعی سهامیه. ر.، 1391، زمین شناسی اقتصادی کانسار آهن چنار علیا با تکیه بر بررسی میان­بارهای سیال، شمال­غرب همدان، مجله زمین شناسی کاربردی پیشرفته، شماره 5، ص 9-19.

لشکری­پور، غ.ر.، غفوری، م.، علیقلی، س. و طریق ازلی، ص.، 1392،  ارزیابی پتانسیل سایندگی سازندهای آیتامیر و نیزار در مقاطع مختلف رسوبی، هشتمین همایش انجمن زمین شناسی مهندسی و محیط زیست ایران، دانشگاه فردوسی مشهد.

ولی­زاده م.، و کریم­پور م.ح.، 1374، منشا و موقعیت تکتونیکی گرانیت­های جنوب مشهد، مجله علوم دانشگاه تهران، جلد 21، شماره 1.

Akesson, U., Lindqvist, J. E., Göransson, M. and Stigh, J., 2001, Relationship between texture and mechanical properties of granites, central Sweden, by use of image-analysing techniques, Bulletin of Engineering Geology and the Environment, Vol:60,  p: 277–284.

ASTM D5731, 2001, Standard test method for determination of the point load strength index of rock. American Society for Testing Materials, Philadelphia.

Baykan N. A., Yılmaz, N., 2010, Mineral identification using color spaces and artificial neural networks, Computers and Geosciences, Vol:36, No:1,p:91-97.

Boorman, S., Boudreau, A. E., Kruger, F.J., 2004, The lower zone–critical zone transition of the Bushveld complex: a quantitative textural study, Journal of Petrology, Vol:45, p: 1209–1235.

Brosch, F.J., Schachner, K., Blumel, M., Fasching, A., Fritz, H., 2000, Preliminary investigation results on fabrics and related physical properties of an anisotropic gneiss, Journal of Structural Geology, Vol:22, p: 1773–1787.

Bruland, A., 1998, Hard rock tunnel boring, Drillability testmethods, Project report 13A-98, NTNU Trondheim.

Friedman M. G., 1960, Chemical analyses of rocks with the petrographic microscope, American Mineralogist, Vol:45, p: 69-78.

Goodchild, J.S. and Fueten, F., 1998, Edge detection in petrographic images using the rotating polarizer stage, Computers & Geosciences, Vol:24, p: 745–751.

Green, D.I., 2005, Digital combination photography: a technique for producing improved images of microscopic minerals, Australian Journal of Mineralogy, Vol:11, No:1, p: 13–24.

Howarth, D.F., Rowlands, J.C., 1987, Quantitative assessment of rock texture and correlation with drillability and strength properties, Rock Mechanics and Rock Engineering, Vol:20, p: 57–85.

ISRM, 1985, Suggested Methods for Determining Point Load Strength, International Society for Rock Mechanics Commission on Testing Methods, Int. J. Rock. Mech. Min. Sci. and Geomechanical Abstr, Vol:22, No:2, p. 51–60.

Jeng, F.S., Weng, M.C., Lin, M.L., Huang, T.H., 2004, Influence of petrographic parameters on geotechnical properties of Tertiary sandstone from Taiwan, Engineering Geology, Vol:73, p: 71–91.

Keulen, N., Heilbronner, R., Stuntz, H., Boullier, A.M., Ito, H., 2007, Grain size distribution of fault rocks: a comparison between experimentally and naturally deformed granitoids, Journal of Structural Geology, Vol:29, p: 1282–1300.

Lislerud A., 1997, Principles of Mechanical Excavation, Posiva 97-12. Posiva OY, Finland. ISBN 951-652-037-5. ISSN 1239-3096.

Middleton, A., Freestone, I.C., and Leese, M. N., 1985, Textural analysis of ceramic thin sections: Evaluation of grain sampling procedures, Archaeometry, Vol:27, No:1, p. 64-74.

Młynarczuk, M., Górszczyk, A., Ślipek, B., 2013, The application of pattern recognition in the automatic classification of microscopic rock images, Computers and Geosciences, Vol:60, p: 126–133.

Mursky, G. A, and Thompson, R. M., 1957, A specific gravity index for minerals, Canadian Mineralogist, Vol:6, No:2, p: 273–287.

Neilson, M. J., and Brockman, G. F., 1977, The error associated with point-counting, American Mineralogist, Vol:62, p: 1238-1244.

Piochi, M., Polacci, M., De Astis, G., Zanetti, A., Mangiacapra, A., Vannucci, R., Giordano, D., 2008, Texture and composition of pumices and scoriae from the Campi Flegrei caldera (Italy): implications on the dynamic of explosive eruptions, Geochemistry, Geophysics and Geosystems, Vol: 9.

Plinninger, R. J. and Restner, U., 2008, Abrasiveness Testing, Quo Vadis? – A Commented Overview of Abrasiveness Testing Methods, Geomechanics and Tunneling, Vol:1, No:1, p: 61-70.

Reedy, C. L., 2006, Review of Digital Image Analysis of Petrographic Thin Sections in Conservation Research, Journal of the American Institute for Conservation, Vol:45, No:2, p: 127-146.

Ross, B. J., Fueten, F., Yashkir, D. Y., 2001, Automatic mineral identification using genetic programming, Machine Vision and Applications, Vol:13, p: 61-69.

Russ, J.C., 2002, Computer Assisted Microscopy: the Measurement and Analysis of Images, Plenum Press, New York.

Streckeisen, A. L., 1976, To each plutonic rock its proper name, Earth Science, Rev:12, p: 12–33.

Whitten, E. H. T., 1953, Modal and Chemical Analyses in Regional Studies, GeoIogy Magazine, Vol: 90, p: 337-344.

Sutherland, D.N., 2007, Estimation of mineral grain size using automated mineralogy, Minerals Engineering, Vol:20, p: 452–460.

Tandon, S. R., Gupta, V., 2013, The control of mineral constituents and textural characteristics on the petrophysical & mechanical (PM) properties of different rocks of the Himalaya, Engineering Geology, Vol:153, p: 125–143.

Thompson, S., Fueten, F., Bockus, D., 2001, Mineral identification using artificial neural networks and the rotating polarizer stage, Computers & Geosciences, Vol:27, No:9, p: 1081–1089.

Wahlstrom, E. E. 1950, Igneous minerals and rocks, John  Wiley and Sons, New York.

West, G., 1986, A relation between abrasiveness and quartz content for some coal measure sediments, Geotechnical and Geological Engineering, Vol:4, p: 73–78.

Williams, H., Turner, F. J., and Gilbert, C. M., 1982, Petrography: An introduction to the study of rocks in thin sections, San Francisco: W. H. Freeman.

Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H.A., Acikalin, S., 2008, Prediction of uniaxial compressive strength of sandstone using petrography-based models, Engineering Geology, Vol:96, p: 141–158.