دلایل پایداری آندالوزیت در زونهای سیلیمانیت و اسپینل-کردیریت موجود در میگماتیت‌های هاله مجاورتی الوند، همدان

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه زمین شناسی دانشگاه شهید چمران اهواز

چکیده

میگماتیت­ها، بخش مهمی از دگرگونی درجه بالای هاله دگرگونی الوند همدان (غرب ایران) را تشکیل داده­اند. میگماتیت­های با منشاء رسی از مزوسوم (با مجموعه کانیهای بیوتیت+سیلیمانیت+گارنت+کردیریت+اسپینل+ ارتوپیروکسن) و لویکوسوم (با مجموعه کانیهای گارنت+ پلاژیوکلاز+  فلدسپار پتاسیم و کوارتز) تشکیل شده­اند. در این میگماتیت­ها بافت واکنشی (سیمپلتیک) کانی­های اسپینل-کردیریت- پلاژیوکلاز جایگزین حاشیه آندالوزیت گردیده است. حضور ریزساختارهای ذوب در این سنگ­ها بیانگر این است که بافت واکنشی آندالوزیت تحت شرایط ذوب بخشی رخ داده است. رشد اسپینل با کردیریت در دمایی حدود700 تا750 درجه سانتیگراد می­باشد که بیانگر حضور آندالوزیت در این دما در مزوسوم میگماتیت­های همدان است. مطالعات صحرایی، شواهد پتروگرافی، واکنشهای ذوب و دما- فشار سنجی این سنگ­ها نشان می­دهد که علت نیمه پایداری آندالوزیت تا زون اسپینل-کردیریت در میگماتیت­های همدان، نرخ گرم شدگی سریع این سنگ­ها و اوراستپینگ (overstepping) است. انتشار حرارت ناشی از توده الوند سبب ایجاد هاله دگرگونی مجاورتی درجه بالا (میگماتیت­ها) شده است بنابراین، در این نوع دگرگونی، دوره دمایی تحمیل شده به سنگ نسبت به دیگر انواع دگرگونی کمتر و نرخ گرم شدگی (گرادیان زمین گرمایی 50 درجه سانتیگراد بر کیلومتر) زیادتر است، بطوریکه این حادثه سبب کاهش SΔ (آنتروپی) واکنش پلی مورفیک آندالوزیت- سیلیمانیت شده است و دامنه اوراستپینگ (overstepping)  آندالوزیت را افزایش داده است تا جائیکه محدوده آن در مزوسوم میگماتیت­های همدان تا 50 ±200 درجه سانتیگراد رسیده است.
 

کلیدواژه‌ها


 بهاریفر،ع.،1383،پترولوژیسنگهایدگرگونیمنطقههمدان،پایاننامهدکتری،دانشگاهتربیتمعلمتهران.

سپاهیگرو،ع.،1378،پترولوژیمجموعهپلوتونیکالوندبانگرشیویژهبرگرانیتوئیدها،رسالهدکتری،دانشگاه تربیتمعلمتهران.

سپاهیگرو،ع.،معین وزیری، ح.،1380، یافته های نو درباره سنگهای دگرگونی و میگماتیت­های مجاور مجموعه پلوتونیک الوند، مجله علمی و پژوهشی علوم پایه دانشگاه اصفهان،(15) 37-52.

  صادقیان،م.،1373،بررسیپترولوژیسنگهایآذرینودگرگونیمنطقهچشمهقصابانهمدان،پایاننامه کارشناسی ارشد، دانشگاه تهران.

Alavi, M., “Regional stratigraphy of the Zagros fold-thrust belt of Iran and its pro foreland evolution“. American Journal of Science 3004 (2004) 1-20.

 Cavosie, A., Sharp, Z. D., Selverstone, J., “Co-existing aluminum silicates in quartz veins: a quantitative approach fordetermining andalusite-sillimanite equilibrium in naturalsamples using oxygen isotopes”, American Mineralogist 84 (2002)417–423

 Cesare, B., “Multi-Stage pseudomorphic replacement of garnet during polymetamorphism: 2. Algebraic analysis of mineral assemblages”, Journal of metamorphic geology 17 (1999) 735-746.

 Cesare, B., Gomez-Pugnaire, M.T., Sanchez-Navas, A., Grobety, B., “Andalusite – sillimanite replacement (Mazarrn - SE Spain): microstructural and TEM study”, American Mineralogy 87 (2002) 433-444.

 Evans, B. W., Berti, J. W., ”Revised metamorphic history for the Chiwaukum Schist, North Cascades, Washington”,  Geology 14 (1986) 695–698.

 Grambling, J. A., “Kyanite, andalusite, sillimanite, and related mineral assemblages in the Truchas Peaks region, New Mexico”, American Mineralogist 66 (1981)702–722.

 Grambling, J.A., Williarns, M.L., “The effects of Fe and Mn on aluminum silicate phase relations of North-Central New Mexico U.S.A”, Journal of Petrology 26 (1985) 324-354.

 Holdaway, M.J., Mukhopadhyay, B., “A re-evaluation of the stability relations of andalusite: thermochemical data and phase diagram for the aluminum silicates”, American Mineralogy 78 (1993) 298–315.

 Kerrick, D. M., “Al2SiO5–bearing segregations in the Lepontine Alps, Switzerland: Aluminum mobility in metapelites”,Geology 16 (1988) 636–640.

Kerrick, D.M., Speer, J.A., “The role of minor element solid solution on the andalusite-silimanite equilibrium in metapelites and peraluminous granitaids”, American Journal of Sciences 288 (19881) 52-192.

 Larson, T.E., Sharp, Z.D., “Aluminum silicate polymorph transformation and the significance of fibrolite vs. prismatic sillimanite. A case study from the ‘triple-point isobar’, New Hampshire”,Geo. Soc. America, Abstracts with Programs 33 (2001) No. 6 A-18.

 Leake, B. E., Skirrow, G., “The pelitic hornfelses of the Cashel-Lough Wheelaun intrusion, CountyGalway, Eire”,Journal of Geology 68 (1960) 23–40.

Mohajjel, M., Fergusson, C.L., Sahandi, M.R., “Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, western Iran“, Journal of Asian Earth Science 21 (2003) 397–412.

 Okrusch, M., Evans, B. W., “Minor element in coexisting andalusite and sillimanite”, Lithos, 3 (1970) 261–268.

 Pattison, D. R. M., “Stability of andalusite and sillimanite and the Al2SiO5 triple point:constraints from the Ballachulishaureole Scotland”, Journal of Geology 100 (1992) 423–446.

 Pattison, D.R.M., Tracy, R.J. “Phase equilibria and thermobarometry of metapelites”, In: D.M. Kerrick, (Ed.), Contact metamorphism. Rev. Min., 26 (1991) 105–206.

 Rumble, D., “Andalusite, kyanite, and sillimanite from the MountMoosilauke region, New Hampshire”, GeologicalSociety of America Bulletin 84 (1973) 2423–2430.

 Saki, A, “Formation of Spinel-cordierite-plagioclase symplectites replacing andalusite in metapelitic of the Alvand aureole, Iran“, Geological Magazine 148 (3) (2011) 423-434.

 Saki, A., Moazzen, M., Baharifar, A.A, “Migmatite microstructures and partial melting of Hamadan metapelitic rocks within the Alvand contact aureole, western Iran“, International geology review Vol. 54, No. 11, August 2012, 1229–1240

Sepahi, A. A., Whitney, D. L., Baharifar, A. A.,  “Petrogenesis of And-Ky-Sil veins and host rocks, Sanandaj-Sirjan metamorphic belt, Hamadan, Iran“, Journal of Metamorphic Geology 22(2) (2004) 119-134.

 Spear, E.S., “Metamorphic phase equilibria and pressure-temperaturetime-time paths”, Mineralogical Society of America Monograph, (1993)799 p.

 Walther, J.V., Wood, B.J., “Rate and mechanism in prograde metamorphism”, Contribution to Mineralogy and Petrology 88 (1984) 246-259.

Whitney, D.L., Mechum, T.A., Kuehner, S.M., Dilek, Y.R., “Progressivc metamorphism of peletic rocks from protolith to granulite facies, Dutchess County, New York, USA: constraints on the timing of fluid infiltration during regional metamorphism”, Journal of Metamorphic Geology 14 (1996) 163- 181.

 Yardley, B.W.D., Leake, B.E., Farrow, C.M., “The metamorphism of Fe-rich pelites from Connemara, Ireland”, Journal of Petrology 21 (1980) 365-399.