زمین شیمی و زمین دما سنجی کانسار مس جیان (بوانات)، زون سنندج-سیرجان، شمال شرق استان فارس

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکترای بخش علوم زمین دانشکده علوم دانشگاه شیراز

2 بخش علوم زمین دانشکده علوم دانشگاه شیراز

چکیده

کانسار مس جیان(بوانات) در لبه ی شرقی زون دگرگونی سنندج-سیرجان در جنوب غرب ایران (195 کیلومتری شمال شرق شیراز) و در مجموعه سنگهای آتشفشانی-رسوبی دگرگون شده سوریان به سن پرمو تریاس قرار گرفته است. کانسنگ مس به شکل کالکوپیریت رگه ای، رگچه ای و افشان دیده می شود. الگوی پراکندگی عناصر خاکی کمیاب (REE) در سنگ میزبان آتشفشانی دگرگون شده و آلبیت- اپیدوت-کلریت شیست نشان دهنده­ ی منشا مافیک این سنگها است. طی دگرسانی، تهی شدگی عناصر REE در سنگ میزبان به صورت بخشی همراه با عناصر سنگ دوست درشت یون (LILE) و فلزات واسطه (TTE)، و در مقابل غنی شدگی عناصر جزیی با قدرت میدان بالا (HFSE) رُخ داده است. داده های حاصل از مطالعه میانبارهای سیال در کوارتز همزاد با کالکوپیریت نشان می دهد که کان توده مس جیان از نوع ذخایر مس گرمابی میان دمایی است. تشکیل سیالات دگرگونی-گرمابی با بیشترین فراوانی بین 200 تا 350 درجه سانتیگراد و شوری 02/0 تا 18 درصد وزنی معادل NaCl  در فشار کمتر از 300 بار در محدوده شرایط فشار و دمای رخساره شیست سبز تا آمفیبولیت زیرین رخ داده است. وجود رژیم های ساختاری شکنا تا شکل پذیر در منطقه موجب تحرک مجدد سیالات دگرگونی در امتداد زون های عمیق بُرشی، مرزهای سنگ شناختی و شکستگی های سطحی شده است که پیامد آن رسوبگذاری کانه های مس می باشد. تغییرات فیزیکی- شیمیایی سیالات دگرگونی و برهمکنش آنها با سنگ میزبان دگرگونی می تواند ساز و کاری موثر در رسوبگذاری کانه های مس در اثر سرد شدگی سیالات و افزایش چگالی، حباب زایی، افزایشpH، کاهش فعالیت لیگاندها و افت ثابت دی الکتریک H2O در منطقه جیان باشد.
 

کلیدواژه‌ها


 

Alavi. M., 2007, Structures of the Zagros Fold-Thrust belt in Iran, American Journal of Science, Vol: 13, p: 1064–1095.

Bao. Zh., Zhao. Zh., Guha. J., Williams-Jones. A. E., 2004, HFSE, REE, and PGE geochemistry of three sedimentary rock-hosted disseminated gold deposits in southwestern Guizhou Province, China, Geochemical Journal., Vol: 38, p: 363-381.

Bau. M., 1991, Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium, Chemical Geology, Vol: 93, p: 219-230.

Colvine. A.C., 1989, An empirical model for the formation of Archean gold deposits: Products of final cratonization of the Superior Province, Canada, Economic Geology, Vol: 6, p: 37-53.

Cox. D.P., Singer. D.A., 1988, Distribution of gold in porphyry copper deposits, U.S.Geological Survey Bulletin, Vol: 1877, p: 1-14.

Fan. H. R., Groves. D.I., Mikucki. E. J., Mc Naughton. N.J., 2000, Contrasting fluid types at the Nevoria gold deposit in the Southern Cross greenstone belt, Western Australia, Implications of auriferous fluids depositing ores within and Archean banded iron formation, Economic Geology, Vol: 95, p: 1527-1536.

Giles. A. D., Marshall. B., 2004, Genetic significance of fluid inclusions in the CSA Cu-Pb-Zn deposit, Cobar, Australia, Ore geology Reviews, Vol: 24, p: 241-266.

Groves. D.I., Ridley. J.R., Bloem. E.M.J., Gebre-Mariam. M., Hagemann. S.G, Hronsky. J.M.A., Knight. J.T, McNaughton. N.J, Ojala. J., Vielreicher R.M., McCuaig. T.C., Holyland. P.W., 1995, Lode gold deposits of the Yilgarn Block: products of late Archean crustal scale overpressured hydrothermal systems, Special Publication of Geological Society of London, Vol: 95, p: 155-172.

Groves. DI., Goldfarb. RJ., Robert. F., Hart. CJr., 2003, Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research and exploration significance, Economic Geology, Vol: 98, p: 1-29.

 

 Hall. D. L., Sterner. S. M., Bodnar. R. J., 1988, Freezing point depression of NaCl–KCl-H2O solutions,Economic Geology, Vol: 93, p: 97-202.

Henderson. P., 1989, Rare earth element geochemistry, Elsevier, 510 p.

Hitzman. M.W., 2000, Iron oxide - Cu - Au deposits, what, where, when and why?Australian Mineral Foundation, Vol: 1, p: 9 – 25.

Kesler. E. S., 2005, Ore-Forming Fluids, Elements, Vol: 1, p: 13-18.

Kontak. D. J., Kerrich. R., 1997, An isotopic (C, O, Sr) study of vein gold deposits in the Meguma Terrone Nova Scotia: Implication for source reservoirs, Economic Geology, Vol: 92, p: 161-180.

Lottermoser. B.G., 1992, Rare earth elements and hydrothermal ore formation processes, Ore Geology Reviews, Vol: 7, No: 1, p: 25-41.

McLennan. S. M., 1989, Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes, Reviews in Mineralogy, Vol: 21, p: 169–200.

Mikucki. E.J., Groves. D.I., 1990, Genesis of primary gold deposits: gold transport and depositional models, Geol. Dep. and Uni. Extension. The Uni. of Western Aus. Pub.,  Vol: 20, p: 212-220.

 Mousivand. F., Rastad. E., Meffre. S., Jan. P., Solomon. M., Zaw. Kh., 2010, U-Pb geochronology and Pb isotope characteristics of the Chahgaz volcanogenic massive sulphide deposit, southern Iran,  International Geology Review, p: 1-24.

Mousivand. F., Rastad. E., Hoshino. K., Watanabe. M., 2007, The Bavanat Cu-Zn-Ag orebody: First recognition of a Besshi-type VMS deposit in Iran, N. Jb. Miner. Abh, Vol: 183, No:3, p: 297–315.

Nielsen. R.L., Forsythe. L.M., Gallahan. W.E., Fisk. M.R., 1994, The major element controls on the partitioning of HFSE between magnetite and mafic to intermediate composition natural silicate liquids at 1 atmosphere, Chemical Geology, Vol: 117, p: 167-193.

Pirajno. F., 2009, Hydrothermal mineral deposits, principle and fundamental concept for the exploration geologist, Springer, 706 p.

Powell. R., Will. T.M., Phillips. G.N., 1991, Metamorphism in Archean greenstone belts- calculated fluid compositions and implications for gold mineralization, Journal of Metamorphic Geology, Vol: 9, p: 141–150.

Ridley. J.R., Diamond. L.W., 2000, Fluid chemistry of orogenic lode gold deposits and implications for genetic models, Economic Geology, Vol: 13, p: 146–162.

Robb. L., 2005, Introduction to ore forming processes, Blackwell publishing British Library, 370 p.

Roedder. E., 1984, Fluid inclusions (Reviews in mineralogy), Mineralogical Society of America, Michigan, 644 p.

Sarkarinejad. Kh., Azizi. A., 2008, Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran, Journal of Structural Geology., Vol: 30, p: 116-136.

Sheikholeslami. M.R., 2002, Evolution structurale et metamorphique de la marge sud de la microplaque de l’Iran central: les complexes metamorphiques de la region de Neyriz (Zone de Sanandaj-Sirjan). These, universite de Brest, Ph.D thesis, 194 p.

Sheikholeslami. M.R., Pique. A., Mobayen. P., Sabzehei. M., Bellon. H., Emami. M. H., 2008, Tectono-metamorphic evolution of the Neyriz metamorphic complex,Quri-Kor-e-Sefid area (Sanandaj-Sirjan Zone, SW Iran), Journal of Asian Earth Sciences, Vol: 31, p: 504–521. 

Smith. M. P., Henderson. P., Campbell. S., 2000, Fractionation of the REE during hydrothermal processes: Constrains from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China, Geochimica et Cosmochimica Acta., Vol: 64, No: 18, p: 3141-3160. 

Wakita. H., Ray. P., Schmitt. R. A., 1971, Abundances of the 14 rare earth elements and 12 other trace elements in Apollo12 samples: five igneous and one breccia rocks and four soils, Proc 2nd Lunar Sciences Conference, p: 139- 1329.

Wilkinson. J. J., 2001, Fluid inclusions in hydrothermal ore deposits,Lithos, Vol: 55, p: 229-272.

 

 

 

 Wood. S. A., Vlassopoulos. D., 1991, The genesis of pegmatites containing high technology metals (Be, Li, Nb, Ta, REE, Zr, Ga and Ge): Theoretical Thermodynamic calculations of the content of high technology metals in aqueous vapor from 600 to 1200 K at 1 Kb”. Contrib. Mineral. Petrol, Vol: 109, No: 2, p: 139-150.

 Wood. S.A., Samson. I.M., 1998, Solubility of ore minerals and complexation of ore metals in hydro- thermal solutions, Reviews in Economic Geology, Vol: 10, p: 33–80.

Zhang. Y.G., Frantz. J.D., 1987, Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCl–CaCl2–H2O using synthetic fluid inclusions, ChemicalGeology,Vol:64,p:335-350.