بررسی کانی سازی طلا در سامانه رگه‌ای دره زار در منطقه پاریز (استان کرمان) باتاکید بر مطالعات میانبارهای سیال و ایزوتوپ‌های گوگرد

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد زمین شناسی، پردیس علوم، دانشگاه تهران

2 عضو هیئت علمی دانشکده زمین شناسی، پردیس علوم، دانشگاه تهران

3 عضو هیئت علمی دانشکده علوم زمین، دانشگاه شاهرود

چکیده

      سامانه رگه‌ای طلای دره‌زار در منطقه پاریز واقع در شمال خاوری سیرجان (استان کرمان) و بر روی کمربند ماگمایی ارومیه - دختر واقع شده است. قدیمی‌ترین سنگ‌های منطقه را واحدهای آتشفشانی – رسوبی تشکیل داده که میزبانی کانی‌سازی طلا هستند. مطالعات صحرایی و ژئوشیمیایی نشان می‌دهند که این کانه‌زائی با دگرسانی رسی همراه بوده و عمدتا به رگه‌های کوارتزی محدود می‌شود. مطالعه میانبارهای سیال بر روی کوارتز‌های کانه‌زایی شده شوری 2 تا 16 درصد و دمای همگن شدگی С˚170تا С˚ 257 را نشان می­دهند که به اختلاط آب‌های ماگمایی و جوی به عنوان حجم اصلی سیال‌های کانه ساز اشاره دارد. با توجه به مقادیر 34Sδ کانی‌های پیریت و کالکوپیریت در رگه‌های طلادار (1/2– تا 5/8–‰) منشاء گوگرد و احتمالا طلا، سری‌های آتشفشانی-رسوبی موجود در منطقه در نظر گرفته می‌شود. شواهد ارائه شده در این تحقیق به تشابه نزدیکی بین کانی‌سازی طلای پاریز با کانسارهای اپی‌ترمال با درجه سولفیداسیون پائین دلالت می‌کند.
 

کلیدواژه‌ها


تقی پور، ن.، درانی، م.، 1392، زمین شیمی ایزوتوپهای پایدار گوگرد و اکسیژن کانی های سولفیدی و سولفاتی کانسار مس پورفیری پرکام، شهر بابک، استان کرمان. مجله زمین شناسی کاربردی پیشرفته، جلد 2، شماره 8، ص 61-70.

سازمان زمین شناسی، 1378 مطالعات اکتشاف ژئو‌شیمیایی سیستماتیک در مقیاس 1:100000 ورقه دره زار.

سهیلی. م.، 1375، نقشه زمین‌شناسی سیرجان، مقیاس 1:250000. سازمان زمین شناسی و اکتشافات معدنی. 

محمدی لقب، ح.، تقی پور، ن.، 1390، تکامل فیزیکو-شیمیایی سیال گرمابی در کانسار مس پورفیری سارا (پرکام)، استان کرمان، مجله زمین شناسی کاربردی پیشرفته، جلد 1، شماره 1، ص 11-24.

مهندسین مشاور ایتوک ایران، 1387، پی‌جویی به روش اکتشافات ژئوشیمیایی 1:25000 در محدوده پاریز (استان کرمان).

 

Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., 2011, Zagros orogeny: a subduction-dominated process, Geological Magazine, Vol: 148, p: 692-725.

Aghanabati. A., 2004, Geology of Iran, Geological Survey of Iran, p: 586.

Berberian, F., Muir. I. D., Pankhurst. R.J., Berberian. M., 1982, Late Cretaceous and early Miocene Andean type plutonic activity in the northern Makran and centeral Iran, Journal of Geological Society of London, Vol: 139, p: 605-614.

Bodnar. R.J., 1983, A method of calculating fluid inclusion volumes based on vapor bubble diameters and P–V–T–X properties on inclusion fluids, Economic Geology, Vol: 78, p: 535–542.

Bodnar. R. J., 1995, Fluid Inclusion Evidence for a Magmatic Source for Metals in Porphyry Copper Deposits, In: Mineralogical Association of Canada Short Course Volume 23, Magmas, Fluids & Ore Deposits, J. F. H. Thompson, ed., p: 139-152.

Buchanan. L.J., 1981, Precious metal deposits associated with volcanic environments in the southwest Arizona, Geological Society Digest, Vol: 14, p: 237-262.

Corbett. G.J., 2004, Epithermal and porphyry gold –geological models in Pacrim Congress 2004, Adelide, Australia, Institute of Mining and Metallurgy, p: 15-23.

Dimitrijevic. M. D., Dimitrijevic. M. N.., Djordjevic M., Voluvic D. 1971, Geological map of Pariz, No. 7149, Series 1:100,000. Geological Survey of Iran (GSI), Tehran.

Evans. A. M., 1993, Ore geology and industrial minerals. 3rd ed., Blackwell Scientific, Oxford.

Fan. H. R., Groves. D. I., Mikucki. E. J., Mc Naughton. N.J., 2000, Contrasting fluid types at the Nevoria gold deposit in the Southern Cross greenstone belt, Western Australia, Implications of auriferous fluids depositing ores within and Archean banded iron formation, Economic Geology, Vol: 95, p: 1527-1536.

Guilbert. J.M., and Park. C.F., 1986, The geology of ore deposits, Freeman. New York, p: 985.

Hall. D. L., Sterner. S. M., Bodnar. R. J., 1988, Freezing point depression of NaCl–KCl-H2O solutions, Economic Geology, Vol: 93, p: 97-202.

Hayba. D. O., 1997, Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: part V. epithermal mineralization from fluid mixing in the OH vein, Economic Geology, Vol: 92, p: 29–44.

Heald. P., Foley. N.K., and Hayba. D.O., 1987, Comparative anatomy of volcanic-hosted epithermal deposits: Acid-sulfate and adularia-sericite types, Economic Geology, Vol: 82, p: 1-26.

Hedenquist. J.W., 1987, Mineralization associated with volcanic-related hydrothermal systems in the Circum-Pacific basin. In Horn, M.K., E.d., Transactions of the Fourth Circum-Pacific Energy and Mineral Resources Conference. Amer. Assoc. Petrol. Geologists, Tulsa, OK, p: 513–524.

Hedenquist. J.W., Arribas. A.J., and Gonzales-Urien. E., 2000, Exploration for epithermal gold deposits, Reviews in Economic Geology, 13: 245-277.

Hoefs. J., 2009, Stable isotope geochemistry. 5 E.D., Berlin: Springer–Verlag.

Kolb. J., and Hagemann. S., 2009, Structural control of low-sulfidation epithermal gold mineralization in the Rosario–Bunawan district, east Mindanao ridge, Philippines. Mineralium Deposits, 44:795–815.

Li. Y., and Liu. J., 2006, Calculation of sulfur isotope fractionation in sulfides, Geochim. Cosmochim. Acta., Vol: 79, p: 1789-1795.

Ohmoto. H., and Rye. R.O., 1979, In: Geochemistry of hydrothermal ore deposits.  Barnes H.L. (Ed.), J. Wiley and Sons, New York, p: 509–567.

Richards. J.P., 2009, Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere, Geology, Vol: 37, p: 247–250.

Richards. J.P., Spell. T., Rameh. E., Razique. A., Fletcher. T., 2012, High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan, Economic Geology, Vol: 107, p: 295–332.

Samson. I., Anderson. A. & Marshal. D., 2003, Fluid Inclusions, Analysis & Interpretation, Short Course Series Vol:  32, Mineralogical Association of Canada.

Sillitoe. R.H., 1977, Metallic mineralization affiliated to sub-aerial volcanism: A review, Geological Society of London, Special Publication Vol: 7, p: 99-116.

Sillitoe. R.H., 1993, Epithermal model: Genetic types, geometrical controls and shallow features, Geological Association of Canada, Special Paper, Vol: 40, p: 403-417.

Sillitoe. R.H., 2010- Porphyry copper systems, Economic Geology, Vol: 105, p: 3-41.

Simon. G., Kesler, S.E., Essene, E.J., and Chryssoulis, S.L., 2000, Gold in porphyry copper deposits: Experimental determination of the distribution of gold in the Cu-Fe-S system at 400º to 700 ºC, Economic Geology, Vol: 95, p: 259-270.

White. N.C., and Hedenquist, J.W., 1995, Epithermal gold deposits: Styles, characteristics and exploration, Society of Economic Geologists, News Letter, Vol: 1, p: 9-13.

Wilkinson. J.J., 2001- Fluid inclusions in hydrothermal ore deposits, Lithos, Vol: 55, p: 229–272.

Yilmaz. H., Oyman, T., Arehart, G., Colakoglu, R., and Billor, Z., 2007, Low-sulphidation type Au–Ag mineralization at Bergama, Izmir, Turkey, Ore Geology Reviews, Vol: 32, p: 81–124.

Zhang. Y.G., Frantz. J.D., 1987, Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCl–CaCl2–H2O using synthetic fluid inclusions, Chemical Geology, Vol: 64, p: 335–350.